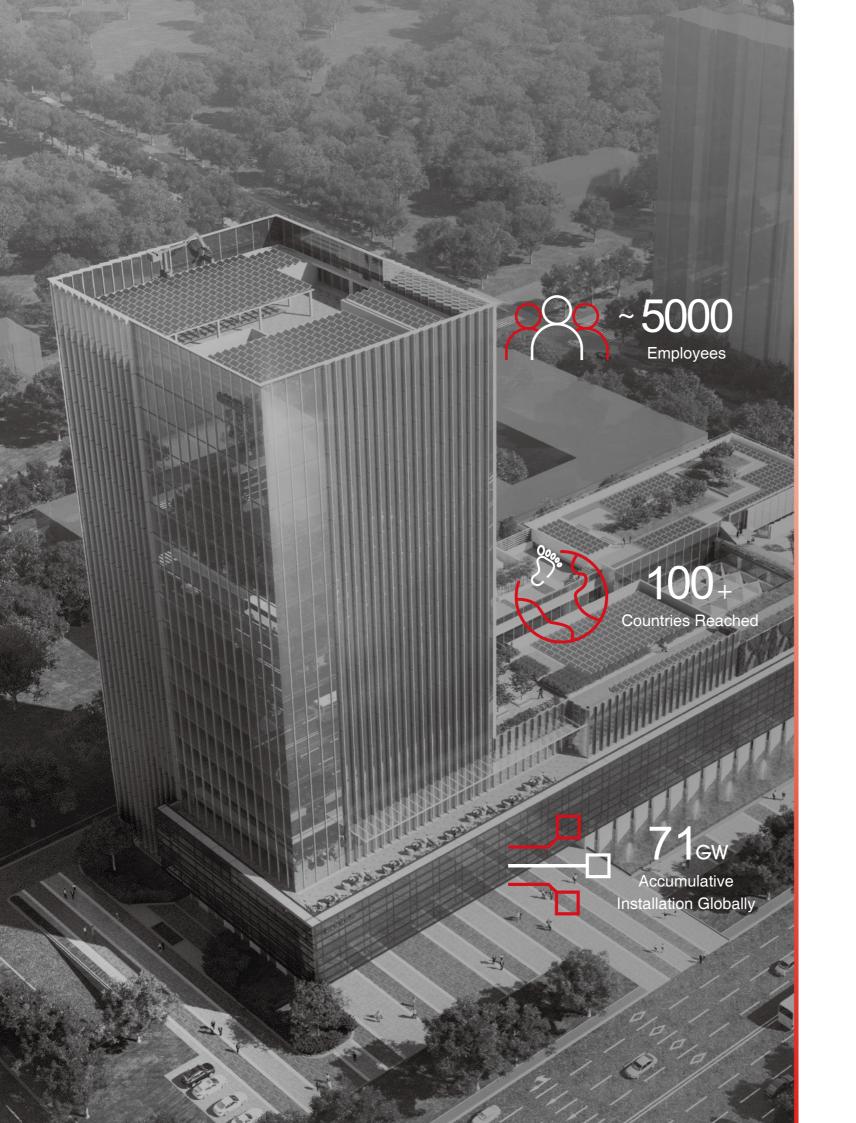
Driving the World's Smart Energy Future

Scan and Follow GoodWe

The technical data above mentioned may be modified in order to reflect continuous technical innovation and improvements achieved by GoodWe's R & D team. GoodWe has the sole right to make such modification at any time without further notice. GoodWe's customers have the right to request the latest version of GoodWe product datasheets and any commercial contracts that may be signed will be based on the most recent version of the datasheet at the moment of signing the contract.

PRODUCT CATALOGUE

Driving the World's Smart Energy Future



0

ABOUT GOODWE

A World-Class Solar **7** Product Manufacturer

Established in 2010, GoodWe has rapidly ascended to become a global leader in renewable energy solutions, extending its services to customers across 100 countries worldwide. With a steadfast commitment to offering a comprehensive suite of energy solutions, GoodWe has diversified its product portfolio to encompass inverters, lithium batteries, PV building materials, EV chargers, accessories, and smart energy management systems, alongside robust safety solutions. This expansive range caters to residential, commercial and industrial, and utility-scale applications, ensuring versatility to meet a broad spectrum of energy needs.

Driven by a dedication to innovation and sustainability, GoodWe continuously invests in research and development, driving the evolution of products to meet the evolving needs of the market. The team of R&D engineers, numbering over 1,000, works tirelessly to ensure the reliability, efficiency, and performance of solutions, setting new industry standards in the process. At GoodWe, belief in the power of renewable energy to transform the world is paramount, with

At GoodWe, belief in the power of renewable energy to transform the world is paramount, with dedication to playing a part in shaping a brighter, greener future for generations to come.

Awards & Achievements

FOP 3

DNV

2021

World's No.1 Residential Inverter Supplier

World's Top 6

PV Inverter Supplier

PV Magazine Award

AWARD

2019

Winner for 7

Consecutive Years

Silver Medal in EcoVadis Sustainability Rating

reddot Design

Reddot Design Award

Bankable Brand with Higher Product Reliability

EuPD Top Brand for 5 Consecutive Years

Energy Storage Inspection for Efficiency

R&D Centers

Global Reach, Local Support

With a robust global presence spanning across numerous countries, GoodWe boasts an extensive sales network that ensures accessibility to its renewable energy solutions worldwide. This expansive reach enables the company to deliver localized services and support to customers in various regions, fostering strong relationships and trust within local communities. From remote villages to bustling metropolises, GoodWe remains dedicated to providing tailored solutions and reliable assistance, reaffirming its commitment to empowering individuals and businesses with sustainable energy solutions on a global scale.

Metrics That Matter

Quality Matters

Quality Control

Supplier Quality Management

- Vendor qualification program (AVL)
- RoHS compliance

Incoming Quality Management

- Incoming sampling plan
- IQC inspection
- Non-conforming material handling

Process Quality Management

- Critical process quality control plan
- Thorough IPQC inspection
- Stringent testing processes

ξOΣ

Quality Engineering

On-going reliability testing (ORT)Calibration management

Outgoing/Open Box Audit

FQC & OQC processCustomer service center

- 01 About GoodWe
- 02 Residential PV Inverters
- 03 | Residential PV + Storage Solu
- 04 Commercial & Industrial PV In
- 05 | Commercial & Industrial PV +
- 06 Utility Scale PV Solutions
- 07 | Intelligent Solar Energy System
- 08 | Case Reference
- 09 | Service Structure
- 10 | Contact Us

TABLE OF CONTENTS

	01-06
	1 1-22
utions	25-54
nverters	57-70
 Storage Solutions 	73-86
	89-94
em Monitoring	97-116
	117-122
	123-124
	125-126

RESIDENTIAL PV INVERTERS

- MIS
- SDT G3
- SDT G2 PLUS+
- MS G3
- DNS G3
- XS G3

Inverter

XS G3 Series

0.7-3.3kW | Single Phase | 1 MPPT

GoodWe XS G3 Series is a residential solar inverter that is designed for maximum convenience and efficiency. It is incredibly lightweight, weighing only 4.6kg and is as compact as an A4 paper, facilitating effortless installation and handling. It boasts an impressive 200% DC input oversizing and a maximum efficiency of 97.6%, ensuring maximum performance and energy generation for homeowners. In addition to its high efficiency, the inverter also offers a quiet operation with <20dB noise levels and IP66 ingress protection. Multiple communication options are supported for easy integration into a smart home system.

Smart Control & Monitoring · 24/7 load consumption monitoring

Superb Safety & Reliability

· IP66 ingress protection

· Export power limit

Optional AFCI¹

· Optional Type II SPD on both DC & AC sides¹

Friendly & Thoughtful Design

Fanless design for quiet operation
 A4 size with lightweight

High Power Generation

• Max. 16A DC input current per string • 200% DC input oversizing

XS G3 Series

Input							
•							
Max. Input Voltage (V)				600			
MPPT Operating Voltage Range (V)				40 ~ 450			
Start-up Voltage (V)				50			
Nominal Input Voltage (V)				360			
Max. Input Current per MPPT (A)				16			
Max. Short Circuit Current per MPPT (A)				25			
Number of MPP Trackers				1			
Number of Strings per MPPT				1			
Output							
Nominal Output Power (W)	700	1000	1500	2000	2500	3000	330
Nominal Output Apparent Power (VA)	700	1000	1500	2000	2500	3000	330
Max. AC Active Power (W)	700	1000	1500	2000	2500	3000	330
Max. AC Apparent Power (VA)	700	1000	1500	2000	2500	3000	330
Nominal Output Voltage (V)			220	/ 230 / 240, L / N	/ PE		
Output Voltage Range (V)			,	154 ~ 288			
Nominal AC Grid Frequency (Hz)			(acco	ording to local star 50 / 60	ndard)		
AC Grid Frequency Range (Hz)				45 ~ 55 / 57 ~ 63	3		
Max. Output Current (A)	3.2	4.6	6.9	9.1	11.4	13.7	15.0
Power Factor	0.2	4.0		e from 0.8 leading		10.7	10.0
Max. Total Harmonic Distortion			i (/ lajuolabie	<3%	10 0.0 lugging)		
Efficiency					•	•	
	97.0%	97.1%	97.2%	97.6%	97.6%	97.6%	97.6
Max. Efficiency European Efficiency	97.0%	97.1%	97.2%	97.6%	97.0%	97.0%	97.6
, ,	93.2%	95.0%	96.0%	96.8%	97.0%	97.1%	97.1
Protection							
PV String Current Monitoring				Integrated			
PV Insulation Resistance Detection				Integrated			
Residual Current Monitoring				Integrated			
PV Reverse Polarity Protection				Integrated			
Anti-islanding Protection				Integrated			
AC Overcurrent Protection				Integrated			
AC Short Circuit Protection				Integrated			
AC Overvoltage Protection				Integrated			
DC Switch				Integrated			
DC Surge Protection			Тур	e III (Type II Optio	onal)		
AC Surge Protection			Тур	e III (Type II Optio	onal)		
AFCI				Optional			
Remote Shutdown				Optional			
Power Supply at Night				Integrated			
General Data							
Operating Temperature Range (°C)				-25 ~ +60			
Relative Humidity				0 ~ 100%			
Max. Operating Altitude (m)				4000			
Cooling Method				Natural Convectio	n		
User Interface			LED, LC	D (Optional), WLA	AN + APP		
Communication			RS485, WiFi, L	AN or 4G or Blue	tooth (Optional)		
Communication Protocols		Мос	dbus-RTU (SunSp	ec Compliant), M	odBus TCP (Opti	onal)	
Weight (kg)				4.6			
Dimension (W×H×D mm)				306 × 218 × 119	-		
Noise Emission (dB)				<20			
Topology				Non-isolated			
Self-consumption at Night (W)				<3			
				IP66			
Ingress Protection Rating							

*: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

DNS G3 Series

3-6kW I Single Phase I 2 MPPTs

The GoodWe DNS G3 Series inverter is specially designed for single-phase residential applications. Integrated with high-current input and DC input oversizing capabilities, the series can bring you optimized power generation and make substantial returns. With its lighter and fanless house fit-in compact design, the DNS G3 inverter provides a reliable power supply yet runs at a super quiet operation below 25dB. The inverter also takes safety measures including optional Arc Fault Failure Interrupter (AFCI) and Type II Surge Protection Device (SPD) on both sides to protect the system from electrical fire and lightning haza environments for guaranteed safety.

Smart Control & Monitoring

· 24/7 load consumption monitoring · Multiple communication protocols supported

Superb Safety & Reliability

Optional AFCI preventing electrical fires* • Optional AC & DC Type II SPD & SPD failure alarm

Optimal Generation

· Max. 16A input current per string 150% DC input oversizing & 110% AC output overloading

Friendly & Thoughtful Design

IP66 ingress protection · Low noise level thanks to fanless cooling

DNS G3 Series

Technical Data					
Input					
Max. Input Voltage (V)			600		
MPPT Operating Voltage Range (V)			40 ~ 560		
Start-up Voltage (V)			50		
Nominal Input Voltage (V)			360		
Max. Input Current per MPPT (A)			16		
Max. Short Circuit Current per MPPT (A) Number of MPP Trackers			23		
Number of Strings per MPPT			1		
Output			· · · · ·		
Nominal Output Power (W)	3000	3600	4200*1	5000	6000
Nominal Output Apparent Power (VA)	3000	3600	4200*1	5000	6000
Max. AC Active Power (W)*4	3300	3960 ^{*2}	4620*1*2	5500	6600
Max. AC Apparent Power (VA) ^{*4}	3300	3960 ^{*2}	4620*1*2	5500	6600
Nominal Output Voltage (V)	0000	0000	220 / 230 / 240	0000	0000
Output Voltage Range (V)			196 ~ 311		
Nominal AC Grid Frequency (Hz)			50 / 60		
AC Grid Frequency Range (Hz)			45 ~ 55 / 55 ~ 65		
Max. Output Current (A)	14.4	17.3 ^{*2}	20.1*2	24.0	28.8
Power Factor			able from 0.8 leading to 0		
Max. Total Harmonic Distortion		. (<3%		
Efficiency					
Max. Efficiency			97.9%		
European Efficiency	97.0%	97.0%	97.2%	97.3%	97.4%
Protection					
PV String Current Monitoring			Integrated		
PV Insulation Resistance Detection			Integrated		
Residual Current Monitoring			Integrated		
PV Reverse Polarity Protection			Integrated		
Anti-islanding Protection			Integrated		
AC Overcurrent Protection			Integrated		
AC Short Circuit Protection			Integrated		
AC Overvoltage Protection			Integrated		
DC Switch			Integrated		
DC Surge Protection			Type III (Type II Optional)		
AC Surge Protection			Type III (Type II Optional)		-
AFCI			Optional		
Emergency Power Off			Optional		
Remote Shutdown Power Supply at Night			Optional Optional		
			Optional		
General Data					
Operating Temperature Range (°C) Relative Humidity			-25 ~ +60 0 ~ 100%		
Max. Operating Altitude (m) ^{*3}			4000		
Cooling Method			4000 Natural Convection		
			, LCD (Optional), WLAN +		
Display Communication			or 4G or DI (Ripple Contro)
Communication Protocols			bus-RTU (SunSpec Comp	, , , ,)
Weight (kg)	12.8	12.8	12.8	12.8	13.4
Dimension (W \times H \times D mm)	12.0	12.0	350 × 410 × 143	12.0	10.4
Noise Emission (dB)			<25		
Topology			Non-isolated		
Self-consumption at Night (W)			<1		
Ingress Protection Rating			IP66		
DC Connector			MC4 (4 ~ 6mm ²)		
AC Connector		Pluce	and play connector (Max.	6mm²)	
		i iug a	and play connector (IVIdA.	onnin j	

*2: For Netherland Max. AC Active Power (W) in divide item and the part of the control of of the contr *4: For Chile Max. AC Active Power (W) & Max.Output Apparent Power(VA) GW3000-DNS-30 is 3000, GW3600-DNS-30 is 3600, GW4200-DNS-30 is 4200, GW5000-DNS-30 is 5000, GW6000-

DNS-30 is 6000.

*: For Australia Nominal Output Current (A) GW3000-DNS-30 is 14.4, GW3600-DNS-30 is 17.3, GW4200-DNS-30 is 20.1, GW5000-DNS-30 is 24.0, GW6000-DNS-30 is 28.8. For Belgium Nominal Output Current (A) GW3000-DNS-30 is 13.0, GW3600-DNS-30 is 15.7, GW4200-DNS-30 is 18.3, GW5000-DNS-30 is 21.7, GW6000-DNS-30 is 26.1.

MS G3 Series

rooftops, thus leading to high power efficiency. The ultralow 50V startup voltage allows inverters to kick in earlier during the day and presents more power generation. In addition, by supporting up to 20A DC max. input current modules, which makes full use of power generated and presents lower LCOE. Importantly, PID (potential induced degradation) recovery function is supported for better module performance. The inverter also takes safety measures including optional Arc-Fault Circuit Interrupter (AFCI) and Type II Surge Protection Device (SPD) on both DC & AC sides to protect the system from electrical fire and lightning hazards in extreme environments.

5-10kW I Single Phase I 3 MPPTs

Smart Control & Monitoring Smart load control with dry contacts

· 24-hour load consumption monitoring

Superb Safety & Reliability Optional AFCI & rapid shutdown¹ · IP66 ingress protection

High Power Generation · Up to 20A max. DC input current per string

· PID recovery function

Friendly & Thoughtful Design

Fanless cooling for quiet operation Software updates via USB

MS G3 Series

5000 5000 5500 5500 5500 24.0 97.8% 97.2%	28. 97.8 97.2
5000 5500 5500 24.0 97.8%	600 660 28. 28. 97.8
5500 5500 24.0 97.8%	28. 97.8
5500 24.0 97.8%	28.
24.0 97.8%	28.
97.8%	97.8
97.8%	97.8
97.8%	97.8
97.8%	97.8
97.8%	97.8
	97.8
97.2%	97.2
-	

GW10K-MS-30 is 97.2%.

GOODWE

MS-30	GW7000-MS-30	GW8500-MS-30	GW10K-MS-30
	600		
	40 ~ 560		
	50		
	360		
	20		
	25	-	
	3		
	1		
)	7000	8500	10000
)	7000	8500	10000
)	7700	9350	10000
)	7700	9350	10000
	220 / 230 / 240		
	160 ~ 270		
	50 / 60		
	45 ~ 55 / 55 ~ 65	·	
	33.5	40.7	43.5 ^{*6}
1 (Adjusta	ble from 0.8 leading to	0.8 lagging)	
	<3%		
6	97.7%	97.9%	97.9%
6	97.1%	97.3%	97.3%
	Integrated		
	Integrated		
	Integrated		
	Integrated Integrated		
	Integrated		
1	Type III (Type II Optional)	
	Type III (Type II Optional Type III (Type II Optional		
	Optional	/	
	Optional		
	-25 ~ +60		
	0 ~ 100%		
	4000		
	Natural Convection		
,	LCD (Optional), WLAN		
	Fi, RS485 or LAN (Option		
Modb	us-RTU (SunSpec Com	pliant)	
	19.0	-	
	441 × 507 × 210		
	<30		
	Non-isolated		
	<1		
	IP66		
D	MC4 (2.5 ~ 4mm ²)	10 2)	
Plug an	d play connector (Max.		
		inal Output Voltage (V) is 22	0, Max. Output Current (A)

GW10K-MS-30 is 45.5, Nominal Output Current (A) GW10K-MS-30 is 45.5. *7: For Chile Max. AC Active Power (W) & Max. Output Aparent Power (VA) GW5000-MS-30 is 5000, GW6000-MS-30 is 6000, GW7000-MS-30 is 7000,

GW8500-MS-30 is 8500, GW10K-MS-30 is 10000.

*: Please visit GoodWe website for the latest certificates. *: All pictures shown are for reference only. Actual appearance may vary.

SDT G2 PLUS+ Series

4-20kW I Three Phase I 2 MPPTs

The GoodWe 4-20kW SDT G2 PLUS+ Series inverter is specially designed for three-phase residential and small commercial projects. The integrated features of high efficiency allow for optimized power generation during the inverter's service cycle. With its lightweight and easy-to-install design, the SDT G2 inverter offers comfort and great convenience for operators and installers. Users can also take all-around smart control of energy management utilizing the featuring 24-hour load consumption monitoring enabled by GoodWe HK3000^{**1}. Meet the perfect choice of maximum energy yield for residential and small-scale commercial usage.

Smart Control & Monitoring

· Smart Shadow Scan with adjustable scan interval**1 · Multi-protocol compatibility for smart home integration

Superb Safety & Reliability

Optional AFCI**2 · Optional exchangeable DC Type II SPD & SPD failure alarm**2

- **1: For SDT G2 Plus+ 8-20kW only. **2: Optional functions or devices are purchased separately. **3: For SDT G2 Plus+ 4-10kW only.

output overloading · Up to 16 A max. DC input current per string

Friendly & Thoughtful Design

High Generation to Cut Bills

· Up to 200% DC input oversizing & 110% AC

Fanless design for quiet operations**3 Elegant and compact design

SDT G2 PLUS+ Series

Technical Data	GW4000- SDT-20	GW5000- SDT-20	GW6000- SDT-20	GW8000- SDT-20	GW10K- SDT-20	GW12K- SDT-20	GW12KLV- SDT-20	GW15K- SDT-20	GW17K- SDT-20	GW20 SDT-2
Input										
Max.Input Voltage (V)	1000	1000	1000	1100	1100	1100	800	1100	1100	1100
MPPT Operating Voltage Range (V)	180 ~ 850	180 ~ 850	180 ~ 850	140 ~ 950	140 ~ 950	140 ~ 950	140 ~ 650	140 ~ 950	140 ~ 950	140 ~
Start-up Voltage (V)	100 ~ 000	100 ~ 000	100 ~ 000	140 % 330		80	140 ~ 000	140 ~ 330	140 ~ 330	140 %
Nominal Input Voltage (V)	620	620	620	620	620	620	370	620	620	620
Max. Input Current per MPPT (A)	16	16	16	15	15	30	30	30	30	30
Max. Short Circuit Current per MPPT (A)	20.0	20.0	20.0	18.7	18.7	37.5	37.5	37.5	37.5	37.5
Number of MPP trackers	20.0	20.0	20.0	10.7			37.5	37.3	37.3	37.3
	1	1	1	1	1	2	2	2	2	2
Number of Strings per MPPT	I	1	1		- 1	2	2	2	2	2
Output										
Nominal Output Power (W)	4000	5000	6000	8000	10000	12000	12000	15000	17000	2000
Nominal Output Apparent Power (VA)	4000	5000	6000	8000	10000	12000	12000	15000	17000	2000
Max. AC Active Power (W)*1	4400	5500	6600	8800	11000	13200	12000	16500	18700	2200
Max. AC Apparent Power (VA) ^{*1}	4400	5500	6600	8800	11000	13200	12000	16500	18700	2200
Nominal Output Voltage (V)	4	00, 3L / N / F	E	380 / 4	00 / 415, 3L	/ N / PE	220 / 127, 3L / N / PE	380 / 4	00 / 415, 3L ,	/ N / PE
Output Voltage Range (V) (according to local standard)					180	~ 270				
Nominal AC Grid Frequency (Hz)	50/60	50 / 60	50 / 60	50 / 60	50 / 60	50 / 60	60	50 / 60	50 / 60	50/0
AC Grid Frequency Range (Hz)	50700	30700	30700	30700		/ 55 ~ 65	00	30700	30700	5071
	6.4	8.0	9.6	12.8	43 ~ 33 16.0	19.1	31.9	24.0	27.1	22
Max. Output Current (A) Power Factor	0.4	0.0	9.0			B leading to (24.0	27.1	32.
Max. Total Harmonic Distortion				~ I (Adjust		3%	.e iagging)			
					<.	370				
Efficiency										
Max. Efficiency	98.2%	98.2%	98.2%	98.3%	98.3%	98.4%	96.9%	98.4%	98.4%	98.4
European Efficiency	97.6%	97.6%	97.6%	97.6%	97.6%	97.8%	96.4%	97.8%	97.8%	97.8
Protection										
PV Insulation Resistance Detection					Integ	rated				
Residual Current Monitoring					Integ	rated				
PV Reverse Polarity Protection					Integ	rated				
Anti-islanding Protection					Integ	rated				
AC Overcurrent Protection						rated				
AC Short Circuit Protection						rated				
AC Overvoltage Protection						rated				
DC Switch						rated				
DC Surge Protection						e II Optional)			
AC Surge Protection		Tpye III			.,po in (1)p		/ III (Type II Op	tional)		
AFCI		וויסעקי		1	Ont	ional				
Emergency Power Off						ional				
Remote Shutdown						ional	-			
					Opi	IUIIAI				
General Data										
Operating Temperature Range (°C)					-30 /	~ +60				
Relative Humidity					0 ~	100%				
Max. Operating Altitude (m) ^{*2}					4(000				
Cooling Method		Na	tural Convec	tion			Sm	art Fan Cool	ing	
Display					LCD (Optio	nal), WLAN +	-		-	
Communication						N or 4G (Op				
Weight (kg)	15.0	15.0	15.0	20.5	20.5	23.5	26.0	26.0	26.0	26.0
Dimension (W \times H \times D mm)		54 × 433 × 1		415 × 5				5 × 511 × 1		
Noise Emission (dB)	<34	<34	<34	<25	<25	<50	<50	<50	<50	<50
Topology	<u4< td=""><td>N04</td><td>N04</td><td>N2J</td><td></td><td>solated</td><td>NOU</td><td><00</td><td><00</td><td><0(</td></u4<>	N04	N04	N2J		solated	NOU	<00	<00	<0(
Self-consumption at Night (W)						:1				
						65				
Ingress Protection Rating DC Connector										
		MC4 (4 ~ 6mm ²)								
AC Connector	Di	and play con					OT Terminal			

GW10K-SDT-20 is 10000, GW12K-SDT-20 is 12000, GW12KLV-SDT-20 is 12000, GW12KLV-SDT-20 is 12000, GW17K-SDT-20 is 17000, GW20K-SDT-20 is 20000.

*2: For Australia, Max. Operating Altitude (m) is 3000. *: Please visit GoodWe website for the latest certificates

*: All pictures shown are for reference only. Actual appearance may vary.

SDT G3 Series

8-30kW | Three Phase | 2 MPPTs

The GoodWe SDT G3 Series, with a power range of 8-30kW, is specifically engineered to cater to the energy needs of three-phase residential and small commercial projects. The inverter boasts an impressive 150% DC oversizing and 110% AC overloading capabilities, allowing for maximum performance and output even in challenging environments. In addition, the SDT G3 Series inverter's lightweight and easy-to-install design offers exceptional convenience for operators and installers alike.

1.1

Smart Control & Monitoring · 24/7 load consumption monitoring · Export power limit

Superb Safety & Reliability

- · Optional AFCI¹
- · IP66 ingress protection
- Optional Type II SPD on both AC and DC sides¹

Friendly & Thoughtful Design

· Fanless cooling for quiet operation² · Elegant and compact design

Flexible & Adaptable Applications

· Up to 150% DC input oversizing & 110% AC output overloading

- Max. 22A DC input current per string
- Optional PID recovery¹

SDT G3 Series

Technical Data		GW10K- SDT-30	GW10K- SDT-EU30		GW15K- SDT-30		GW20K- SDT-30			GW25K- SDT-C30	
Input											
Max. Input Voltage (V)				1100				8	50	11	00
MPPT Operating Voltage Range (V)	-			140 ~ 100)				~ 700		- 1000
Start-up Voltage (V)				140 - 1000	, 	160	-	140	100	1 140	1000
Nominal Input Voltage (V)	_			600				4	20	6	00
Max. Input Current per MPPT (A)			22				32/22		42/32	42/22	42
Max. Short Circuit Current per MPPT (A)			27.5				40.0 / 27.5		52.5 / 40.0	52.5 / 27.5	52.5
Number of MPP Trackers						2				·	
Number of Strings per MPPT			1				2/1		2	2/1	
Output											
Nominal Output Power (W)	8000	10000	10000	12000	15000	17000	20000	12000	17000	25000	300
Nominal Output Apparent Power (VA)	8000	10000	10000	12000	15000	17000	20000	12000	17000	25000	30
Max. AC Active Power (W) ^{*1}	8800	11000	10000	13200	16500	18700	22000	12000	17000	27500	33
Max. AC Apparent Power (VA)	8800	11000	10000	13200	16500	18700	22000	12000	17000	27500	33
Nominal Output Voltage (V)		220 / 380,	230 / 400,	240 / 415,	3L / N / PE	or 3L / PE			0, 3L / N / 3L / PE	220 / 380, 23 415, 3L / N /	
				180 ~ 280					~ 139		~ 280
Output Voltage Range (V)			(accordir	ng to local					ng to local	(accordin	
Nominal AC Grid Frequency (Hz)				50 / 60	,				idard) 60		<u>dard)</u> / 60
AC Grid Frequency Range (Hz)			15	~ 55 / 55 ~	65				~ 60.2	45 ~ 55	
Max. Output Current (A) ^{$+2$}	13.4	16.7	15.2	~ <u>33735</u> ~ 20.0	25.0	28.3	33.3	33.3	~ 00.2	43 ~ 33	~ 50 50
Power Factor	10.4	10.1	10.2				ling to 0.8 li		50.0	71.7	00
Max. Total Harmonic Distortion				1 (710		<3%		-99'''9/			
Efficiency											
Max. Efficiency	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.5%	98.2%	97.5%	98.6%	98.
European Efficiency	98.0%	98.0%	98.0%	98.2%	98.2%	98.2%	98.2%	97.2%	96.9%	98.2%	98.
Protection											
PV String Current Monitoring						Integrated	1	_			
PV Insulation Resistance Detection						Integrated					
Residual Current Monitoring						Integrated					
PV Reverse Polarity Protection						Integrated					
Anti-islanding Protection						Integrated					
AC Overcurrent Protection						Integrated					
AC Short Circuit Protection						Integrated					
AC Overvoltage Protection						Integrated					
DC Switch						Integrated					
DC Surge Protection			Type III	(Type II O	ptional)			Ту	oe II	Typ (Type II	e III Ontior
AC Surge Protection					Type II	I (Type II O	ptional)			Г(турен	optio
AFCI					., 60 1	Optional					
Emergency Power Off						Optional					
Rapid Shutdown						Optional					
Remote Shutdown						Optional					
PID Recovery						Optional					
Power Supply at Night						Optional					
General Data											
Operating Temperature Range (°C)						-30 ~ +60					
Relative Humidity						0 ~ 100%					
Max. Operating Altitude (m)						4000					
Cooling Method		Nati	ural Conve	otion				Smart Fa	an Cooling		
User Interface							NLAN + AF				
Communication				,	,		luetooth (O				
Weight (kg)	14.7	14.7	14.7	16.2	16.2	17.1	17.1	17.1	20.5	19.7	20
Dimension (W \times H \times D mm)	_	49	$1 \times 392 \times 2$	210					13×227	-	
Noise Emission (dB)			<30					<	:45		
Topology					1	Von isolate	d				
Self-consumption at Night (W)						<1					
Ingress Protection Rating						IP66					
DC Connector		OT termina		<u></u>	MC rminal	C4 (4 ~ 6m	m²)				

1: FOI Brazil and Critie, the Max. AC ACtive Power (W) & Max. AC Apparent Power (VA): GW0000-SDT-30 is 8000, GW10K-SDT-30 is 10000, GW12K-SDT-30 is 12000, GW15K-SDT-30 is 15000, GW17K-SDT-30 is 12000, GW25K-SDT-30 is 20000, GW12KLV-SDT-C30 is 17000, GW25K-SDT-C30 is 25000, GW30K-SDT-C30 is 30000.
 *2: For Brazil and Chile, Max. Output Current (A) and Nominal Output Current (A): GW8000-SDT-30 is 12.1, GW10K-SDT-30 is 15.2, GW12K-SDT-30 is 18.2, GW15K-SDT-30 is 22.7,

1: Optional functions or devices are purchased separately. 2: For SDT G3 8-15kW only.

GOODWE

GW17KLV-SDT-C30 is 25.8, GW25K-SDT-C30 is 37.9, GW30K-SDT-C30 is 45.5. : Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

MIS Series

1.6-2kW I Single Phase I Microinverter

GoodWe's MIS Series microinverter is an ideal solution for residential and small commercial settings. Designed to work seamlessly with solar panels, each microinverter is paired with four panels, enabling individual panel tracking The MIS Series microinverter is equipped with built in WiFi and Bluetooth for easy setup and maintenance. Furthermore, it elevates monitoring and communication capabilities, empowering users to monitor each panel's performance in real time and identify any issues or inefficiencies. With GoodWe MIS, you will be able to maximize energy production and reduce energy losses, while also enhancing safety.

Friendly & Thoughtful Design

· 4-in-1 design for multi-angle rooftop · Plug & play installation, easy to install

Superb Safety & Reliability

- · AC protection relay integrated
- · Max. DC voltage 60V, eliminating high DC voltage risks
- · IP67 ingress protection

_	
-0-	0
\/	Sm

nart Control & Monitoring

· Module-level monitoring · Wi-Fi mesh networking · Smart monitoring platform for easier O&M

Optimal Performance

· 4 MPP trackers, module-level MPPT

- · Compatible with high-power modules
- 22V startup voltage

MIS Series

Technical Data	GW1600-MIS	GW1800-MIS	GW2000-MIS		
Input					
	000 / 505		100 - 070		
Commonly Used Module Power (W)	320 to 535+	360 to 600+	400 to 670+		
Max. Input Voltage (V)		65			
MPPT Operating Voltage Range (V)					
Start-up Voltage (V)		22			
Max. Input Current (A)		4 × 16			
Max. Input Short Circuit Current (A)		4 × 25			
Number of MPP Trackers		4			
Number of Inputs per MPPT		1			
Output					
Max. Continuous Output Power (VA)	1600	1800	2000		
Nominal Output Voltage (V)		1 / N / PE, 220 / 230 / 240			
Output Voltage Range (V) ^{*1}		180 ~ 275			
Nominal Output Frequency (Hz)		50 / 60			
AC Grid Frequency Range (Hz) ¹		50 / 60 ±5			
	7.27@220V	8.18@220V	9.09@220V		
Max. Continuous Output Current (A)	6.96@230V	7.83@230V	8.70@230V		
Power Eactor	6.67@240V	7.50@240V djustable from 0.8 leading to 0.8 la	8.33@240V		
Max. Total Harmonic Distortion		<3%	(gging)		
Max. Units Per 4mm ² Branch ^{*2}		2			
Max. Units Per 6mm ² Branch ^{*2}		4			
Efficiency		·			
		96.4%			
Max. Efficiency		99.8%			
Nominal MPPT Efficiency					
Night Power Consumption (W)		0.05			
General Data					
Operating Temperature Range (°C) ^{*3}		-40 ~ +65			
Derating temperature (°C)		45			
Storage Temperature (°C)		-40 ~ +85			
Cooling Method		Natural convection			
Weight (kg)		6			
Dimensions (W \times H \times D mm)		330.5 × 266.7 × 42.5			
Ingress Protection Rating		IP67			
DC Connector		Staubli MC4			
Features					
Communication		Built-in Wi-Fi and Bluetooth			
Topology	(alvanically Isolated HF Transform	er		
Monitoring		SEMS			
Protection		tion, PV Reverse Polarity Protectic rt Circuit Protection, AC Overvolta Arrester			
Warranty	1	2 Years Standard; 25 Years Optior	al		
Compliance	12 Years Standard; 25 Years Optional EN 62109-1:2010, EN 62109-2:2011, IEC 62109-1:2010, IEC 62109-2:2011, UTE C15-712-1:201 DIN VDE 0126-1-1:2013, ENIEC 61000-6-3:2021, EN 61000-6-3:2007+A1:2011+AC:2012, ENIE 61000-6-4:2019, EN 61000-6-4:2007+A1:2011, AS/NZS 61000.6.3:2012, AS/NZS 61000.6.4:202 BS EN IEC 61000-6-3:2021, BS EN 61000-6-3:2007+A1:2011, BS ENIEC 61000-6-4:2019, BS E 61000-6-4:2007+A1:2011, EN 61000-2-2:2002+A2:2019, IEC 61000-2-2:2018(ed.2.2), EN IEC 61000-6-1:2019, EN 61000-6-1:2007, EN IEC 61000-6-2:2019, EN 61000-6-2:2005+AC:2005, EN IEC 61000-6-2:2005+AC:2005+				

*1: Nominal voltage/frequency range can be extended beyond nominal if required by the utility.

- *2: Limits may vary. Refer to local requirements to define the number of micro inverters per branch in your area. *3: The inverter may enter to power de-grade mode under poor ventilation and heat dissipation installation environment.
- The investment of point of point of grant of grant of the investment of the inv

ENIEC 61000-6-1:2019, BS EN IEC 61000-6-2:2019

RESIDENTIAL

ENERGY STORAGE PRODUCTS

Inverter

- ES G2
- SBP G2
- ES Uniq
- EH PLUS+
- ET PLUS+

Battery

- Lynx A G2
- Lynx U
- Lynx D
- Lynx F PLUS+
- Lvnx F G2

EV Charger

• HCA Series

ES G2 Series

3-6kW | Single Phase | 2 MPPTs Hybrid inverter (LV)

The GoodWe ES G2 inverter, ranging from 3 to 6kW, is a single-phase hybrid inverter designed to increase selfconsumption of the generated solar energy, with the ability to control the flow of energy intelligently. The inverter can automatically realize UPS-level switching to the back-up mode in less than 10ms, with strong backup ability to withstand heavy loads like air conditioners. Its smart design also offers great flexibility for demanding scenarios as it supports parallel connection for dependable backup power supply. Featured with plug-and-play, compact design, and minimal weight, PV installations are quicker and easier to complete than ever before. Importantly, ES G2 is compatible with a wide range of low voltage batteries such as GoodWe Lynx Home U battery. For homeowners looking to achieve a high degree of energy autonomy, reliable power supply and affordable energy prices, the ES G2 is the right choice.

Smart Control & Monitoring

Smart load control with dry contacts · Smart home integration with multi-protocol communications

Superb Safety & Reliability Optional AFCI on DC side Remote Shutdown

Friendly & Thoughtful Design Plug & Play

· Elegant and compact design

Flexible & Adaptable Applications

· Maximum 16A DC input current per string and high-power module compatibility Strong backup power supply

1110

ES G2 Series

Technical Data	GW3000-ES-20	GW3600-ES-20	GW3600M-ES-20	GW5000-ES-20	GW5000M-ES-20	GW6000-ES-20	GW6000M
Battery Input Data							
Battery Type ^{*1}				Li-Ion			
Nominal Battery Voltage (V)				48			
Battery Voltage Range (V)				40 ~ 60			
Max. Continuous Charging Current (A) ^{*1}	60	75	60	120	60	120	60
Max. Continuous Discharging Current (A) ^{*1}	60	75	60	120	60	120	60
Max. Charge Power (W)*1	3000	3600	3000	5000	3000	6000	3000
Max. Discharge Power (W)	3200	3900	3200	5300	3200	6300	320
PV String Input Data							
Max. Input Power (W)*2	4500	5400	5400	7500	7500	9000	900
Max. Input Voltage (V)	1000	0100	0100	600	1000	0000	000
MPPT Operating Voltage Range (V)				60 ~ 550			
Start-up Voltage (V)				58			
Nominal Input Voltage (V)				360			
Max. Input Current per MPPT (A)				16			
Max. Short Circuit Current per MPPT (A)				23			
Number of MPP Trackers	1	2	2	2	2	2	2
Number of Strings per MPPT				1			
AC Output Data (On-grid)							
Nominal Apparent Power Output to Utility Grid (VA)	3000	3680	3680	5000 ^{*3}	5000 ^{*3}	6000*3	6000
Max. Apparent Power Output to Utility Grid (VA)	3000	3680	3680	5000*3	5000 ^{*3}	6000*3	6000
Max. Apparent Power from Utility Grid (VA)	6000	7360	3680	10000	5000	10000	600
Nominal Output Voltage (V)				220 / 230 / 240			
Nominal AC Grid Frequency (Hz)				50 / 60			
Max. AC Current Output to Utility Grid (A)	13.6	16.7	16.7	22.7	22.7	27.3	27.3
Max. AC Current From Utility Grid (A)	27.3	33.5	16.7	43.5	22.7	43.5	27.3
Power Factor			~1 (Adjustable	from 0.8 leading	to 0.8 lagging)		
Max. Total Harmonic Distortion				<3%			
AC Output Data (Back-up)							
Back-up Nominal Apparent Power (VA)	3000	3680	3680	5000	5000	6000	600
		3680 (7360@10sec)	3680	5000 (10000@10sec)	5000	6000 (10000@10sec)	600
Max. Output Current (A)	13.6	16.7	16.7	22.7	22.7	27.3	27.3
Nominal Output Voltage (V)				220 / 230 / 240			
Nominal Output Freqency (Hz)				50 / 60			
Output THDv (@Linear Load)				<3%			
Efficiency							
Max. Efficiency				97.6%			
European Efficiency				96.7%			
Max. Battery to AC Efficiency MPPT Efficiency				<u>95.5%</u> 99.9%			
				33.378			
Protection							
PV String Current Monitoring				Integrated			
PV Insulation Resistance Detection Residual Current Monitoring				Integrated Integrated			
PV Reverse Polarity Protection				Integrated			
Anti-islanding Protection				Integrated			
AC Overcurrent Protection				Integrated			
AC Short Circuit Protection				Integrated			
AC Overvoltage Protection				Integrated			
DC Switch				Integrated			
DC Surge Protection AC Surge Protection			-	Type II Type III			
AFCI				Optional			
Remote Shutdown				Integrated			
General Data							
Operating Temperature Range (°C)				25 160			
Relative Humidity				-25 ~ +60 0 ~ 95%			
Max. Operating Altitude (m)			30	00 (>2000 Deratir	na)		
Cooling Method				Vatural Convection	5/		
Display			L	ED, WLAN + APF	>		
Communication with BMS				CAN			
Communication with Meter			3.4.7	RS485	10		
Communication with Portal Weight (kg)	19.6	20.8	20.0	Fi / WiFi + LAN / 4 21.5	1G 20.0	21.5	20.0
Dimension ($W \times H \times D$ mm)	19.0	20.0		21.5 5.9 × 434.9 × 154		21.0	20.0
Topology				Non-isolated			
Self-consumption at Night (W)				<10			
Ingress Protection Rating				IP65			
Mounting Method				Wall Mounted			

*2: The max power is the actual power of PV. Besides, in Australia, for most of the PV module, the max. input power can achieve 2*Pn, Such as the max. input power of GW3000-ES-20 can achieve 6000W.

GOODWE

lease visit GoodWe website for the latest certificates *: All pictures shown are for reference only. Actual appearance may vary.

SBP G2 Series

3.6-6kW I Single Phase AC-coupled retrofit inverter (LV)

The GoodWe SBP G2 Series is an AC-coupled retrofit solution, which is able to upgrade an existing single-phase or three-phase on-grid PV system into an energy storage system by adding a battery. The inverter is compatible with low-voltage batteries ranging from 40 to 60V and allows surplus electricity to be stored in the battery for later use. The integrated plug-and-play solution, compact design, and minimal weight simplify its installation, operation, and maintenance. Importantly, the inverter can automatically realize UPS-level switching to the back-up mode in less than 10ms, ensuring a stable and reliable power supply. An all-round intelligent system for optimized power usage and maximized return on investment.

Smart Control & Monitoring

<10ms UPS-level switching · Smart home integration with multi-protocol communications

Superb Safety & Reliability IP65 ingress protection Remote Shutdown

Friendly & Thoughtful Design 6 Plug & Play · Elegant and compact design

Flexible & Adaptable Applications

AC-coupled battery storage retrofit solution · Suitable for both single-phase & three-phase systems

: : : 0

SBP G2 Series

	Technical Data	GW3600-SB
	Battery Input Data	
_	Battery Type ^{'1}	
	Nominal Battery Voltage (V)	
	Battery Voltage Range (V)	
	Start-up Voltage (V)	
	Number of Battery Input	
	Max. Continuous Charging Current (A) ^{*1}	75
	Max. Continuous Discharging Current (A) ¹	75
	Max. Charging Power (W) ^{*1} Max. Discharging Power (W)	3600
		3900
	AC Output Data (On-grid)	
	Nominal Output Power (W)	3680
	Nominal Apparent Power Output to Utility Grid (VA)	3680
	Max. Apparent Power Output to Utility Grid (VA)	3680
	Max. Apparent Power from Utility Grid (VA)	7360
	Nominal Output Voltage (V)	
	Nominal AC Grid Frequency (Hz)	10.7
	Max. AC Current Output to Utility Grid (A)	16.7 33.5
	Max. AC Current From Utility Grid (A) Power Factor	
	Max. Total Harmonic Distortion	
	AC Output Data (Back-up)	
	Back-up Nominal Apparent Power (VA)	3680
	Max. Output Apparent Power without Grid (VA)	3680 (7360@10 3680
	Max. Output Apparent Power with Grid (VA) Max. Output Current (A)	16.7
	Nominal Output Voltage (V)	10.7
	Nominal Output Frequency (Hz)	
	Output THDv (@Linear Load)	
	Efficiency	
	Max. Battery to AC Efficiency	
	Protection	
	Residual Current Monitoring	
	Anti-islanding Protection	
	AC Overcurrent Protection	
	AC Short Circuit Protection	
	AC Overvoltage Protection AC Surge Protection	
	Remote Shutdown	
	General Data	
	Operating Temperature Range (°C)	
	Relative Humidity	
	Max. Operating Altitude (m) Cooling Method	
	User Interface	
	Communication with BMS	
	Communication with Meter	
	Communication with Portal	
	Weight (kg)	19.2
	Dimension (W \times H \times D mm)	
	Topology	
	Self-consumption at Night (W)	
	Ingress Protection Rating	
	Mounting Method	
*1 · T	The actual charge and discharge current / nower also depends on th	e battery

*2: 4600 for VDE-AR-N4105 & NRS 097-2-1. *: Please visit GoodWe website for the latest certificates.

-20	GW5000-SBP-20	GW6000-SBP-20
	Li-lon	
	48	
	40 ~ 60	
	40	
	1	
	120	120
	120	120
	5000	6000
	5300	6300
	5000	6000
	5000°2	6000 ^{*2}
	5000°2	6000 ^{*2}
	10000	10000
	220 / 230 / 240	
	50 / 60	07.0
	22.7	27.3
4 (1	43.5	43.5
~1 (A	Adjustable from 0.8 leading to 0.8 la	gging)
	<3%	
	5000	6000
ec)	5000 (10000@10sec)	6000 (10000@10sec)
00)	5000	6000
	22.7	27.3
	220 / 230 / 240	21.0
	50 / 60	
	<3%	
	<078	
	95.5%	
	Integrated	
	Integrated Integrated	
	Integrated	
	Integrated	
	Integrated	
	Type III	
	Integrated	
	Integrated	
	-25 ~ +60	
	0 ~ 95%	
	3000 (>2000 derating)	
	Natural Convection	
	LED, WLAN + APP	
	CAN	
	RS485	
	WiFi / WiFi + LAN / 4G	
	19.5	19.5
	505.9 × 434.9 × 154.8	
	Isolated	
	<10	
	IP65	
	Wall Mounted	

The ES Uniq Series is a dedicated single-phase hybrid inverter engineered for residential applications, delivering cost-effective energy storage solutions with capacities of 8, 10, and 12kW. This inverter is designed to work seamlessly with 182mm modules, providing a 200% oversizing capacity. Crucially, it can manage up to a 200% overload, ensuring dependable performance, especially during peak usage. It facilitates the parallel connection of up to 16 inverters for both on-grid and off-grid operations, making it well-suited for expanding energy requirements. Moreover, the ES Uniq inverter facilitates generator management and allows for the storage of energy generated by generators.

Flexible & Adaptable Applications

 Integrated generator control and energy storage functionality
 Parallel connection capability for on-grid and off-grid operations

Higher Power Generation

Max. 16A DC input current per string
 Up to 200% DC input oversizing

Smart Control & Monitoring

· Smart load control

 \cdot Backup with UPS-level switching <10ms

ES Uniq Series

Technical Data	GW8000-ES-C10	GW10K-ES-C10	GW12K-ES-C1
Battery Input Data			
Battery Type		Li-lon	
Nominal Battery Voltage (V)		48	
Battery Voltage Range (V) Max. Continuous Charging Current (A)	160	40 ~ 60 200	240
Max. Continuous Discharging Current (A) ^{*1}	160 (176 at 10min)	200 (220 at 10min)	240 (264 at 10min)
Max. Charging Power (W)	8000	10000	12000
Max. Discharging Power (W)	8800	11000	13200
PV String Input Data			
Max. Input Power (W)	16000	20000	24000
Max. Input Voltage (V) MPPT Operating Voltage Range (V)		600 60 ~ 550	
Start-up Voltage (V)		58	
Nominal Input Voltage (V)		360	
Max. Input Current per MPPT (A) ^{*4} Max. Short Circuit Current per MPPT (A)	32 / 16 48 / 24	32 / 32 48 / 48	<u>32 / 32</u> 48 / 48
Number of MPP Trackers	48 / 24	2	40 / 40
Number of Strings per MPPT	2 / 1	2/2	2/2
AC Output Data (On-grid)			
Nominal Apparent Power Output to Utility Grid (VA)	8000	10000	12000
Max. Apparent Power Output to Utility Grid (VA)	8800	11000	13200
Max. Apparent Power from Utility Grid (VA)	16500	16500 220 / 230 / 240	16500
Nominal Output Voltage (V) Output Voltage Range (V)		170 ~ 280	
Nominal AC Grid Frequency (Hz)		50 / 60	
AC Grid Frequency Range (Hz)	40	45 ~ 55 / 55 ~ 65	00
Max. AC Current Output to Utility Grid (A) Max. AC Current From Utility Grid (A)	40	<u> </u>	60
Power Factor	~1 (Adj	ustable from 0.8 leading to 0.8 l	agging)
Max. Total Harmonic Distortion		<3%	
AC Output Data (Back-up)			
Back-up Nominal Apparent Power (VA)	8000	10000	12000
Max. Output Apparent Power (VA)	8800 (16000 at 10s)	11000 (20000 at 10s)	13200 (24000 at 10s
Max. Output Current (A) Nominal Output Voltage (V)	40	50 220 / 230 / 240	60
Nominal Output Frequency (Hz)		50 / 60	
Output THDv (@Linear Load)		<3%	
AC Data (Generator)			
Nominal Apparent Power from AC generator (VA)	8000	10000	12000
Max. Apparent Power from AC generator (VA)	11000	12000	12000
Nominal Output Voltage (V) Output Voltage Range (V)		220 / 230 / 240 170 ~ 280	
Nominal AC generator Frequency (Hz)		50 / 60	
AC generator Frequency Range (Hz)	50.0	45 ~ 55 / 55 ~ 65	545
Max. AC Current From AC generator (A) Nominal AC Current From AC generator (A)	<u>50.0</u> 36.4 / 34.8 / 33.3	<u>54.5</u> 45.5 / 43.5 / 41.7	<u>54.5</u> 54.5 / 52.2 / 50.0
Nominal Output Current (A)	36.4 / 34.8 / 33.3	45.5 / 43.5 / 41.7	54.5 / 52.2 / 50.0
Efficiency			
Max. Efficiency		97.6%	
European Efficiency		96.2%	
Max. Battery to AC Efficiency		95.5%	
MPPT Efficiency		99.9%	
Protection			
PV String Current Monitoring PV Insulation Resistance Detection		Integrated Integrated	
Residual Current Monitoring		Integrated	
PV Reverse Polarity Protection		Integrated	
Anti-islanding Protection		Integrated	
AC Overcurrent Protection AC Short Circuit Protection		Integrated Integrated	
AC Overvoltage Protection		Integrated	
DC Switch		Integrated	
DC Surge Protection AC Surge Protection		Type III Type III	
AC Surge Protection AFCI		Optional	
Remote Shutdown		Integrated	
General Data			
Operating Temperature Range (°C)		-35 ~ +60	
Relative Humidity		0 ~ 95%	
Max. Operating Altitude (m)		3000 Smart Eap Cooling	
Cooling Method User Interface		Smart Fan Cooling LED, WLAN + APP	
Communication with BMS		CAN	
Communication with Meter		RS485	
Communication with Portal Weight (kg)		LAN / WiFi 29	
Dimension (W \times H \times D mm)			
Topology		Non-isolated	
Ingress Protection Rating		IP65	
Mounting Method		Wall Mounted	

1: Optional functions or devices are purchased separately.

*1: The max. transient discharging current is especially based on the off-gird scenario.
*2: As for mppt with two strings of pv module, the maximum input current of per string is 16A.

GOODWE

*: All pictures shown are for reference only. Actual appearance may vary.

EH PLUS+ Series

3.6-6kW I Single Phase 2 MPPTs I Battery Ready (HV)

The EH Series is an energy storage inverter that is compatible with high voltage Li-Ion batteries ranging from 85 to 460V to provide a highly flexible system design. Its "Battery Ready" design provides a future-proof solution for users who may want to add battery storage in the future, simply by purchasing an activation code. Designed as a highly adaptable and flexible option for residential PV systems, the inverter has its maximum DC input current reached 16A for each string and combines well with highpower PV modules. Featuring UPS-level switching (switching time <10ms) and peak shaving, EH Series ensures a stable and reliable power supply.

Smart Control for Smart Energy

Superb Safety & Reliability · Built-in Type II SPD on DC side · IP65 ingress protection

Friendly & Thoughtful Design · Fanless cooling for quiet operation

Paniess cooling for quiet operation
 Pre-wired communication cables

Flexible & Adaptable Applications

Battery ready option
 Maximum 16A DC input current per string

EH PLUS+ Series

	Technical Data	GW3600N-I
	Battery Input Data	
	Battery Type	
	Nominal Battery Voltage (V)	
	Battery Voltage Range (V)	
	Start-up Voltage (V) Number of Battery Input	
	Max. Continuous Charging Current (A)	
	Max. Continuous Discharging Current (A)	
	Max. Charging Power (W) Max. Discharging Power (W)	3600
		3000
	PV String Input Data	
	Max. Input Power (W)*1	5400
	Max. Input Voltage (V) MPPT Operating Voltage Range (V)	
	Start-up Voltage (V)	
	Nominal Input Voltage (V)	
	Max. Input Current per MPPT (A)	
	Max. Short Circuit Current per MPPT (A)	
	Number of MPP Trackers Number of Strings per MPPT	
	AC Output Data (On-grid)	
	Nominal Output Power (W)	3600
	Nominal Apparent Power Output to Utility Grid (VA) ⁻³ Max. Apparent Power Output to Utility Grid (VA) ⁻³	<u>3600</u> 3600 / 3960*
		7200 (Charging 3
	Max. Apparent Power from Utility Grid (VA)	Backup Output 3
	Nominal Output Voltage (V)	
	Nominal AC Grid Frequency (Hz)	10 (10**
	Max. AC Current Output to Utility Grid (A)	<u>16 / 18*2</u> 32
	Max. AC Current From Utility Grid (A) Power Factor	52
	Max. Total Harmonic Distortion	
	AC Output Data (Back-up)	
	Back-up Nominal Apparent Power (VA)	3600
	Max. Output Apparent Power without Grid (VA)	3600 (4320@60
	Max. Output Apparent Power with Grid (VA)	3600
	Max. Output Current (A)	15.7
	Nominal Output Voltage (V) Nominal Output Frequency (Hz)	
	Output THDv (@Linear Load)	
	Efficiency	
	Max. Efficiency European Efficiency	
	Max. Battery to AC Efficiency	
	MPPT Efficiency	
	Protection	
	PV String Current Monitoring	
	PV Insulation Resistance Detection	
	Residual Current Monitoring	
	PV Reverse Polarity Protection	
	Battery Reverse Polarity Protection Anti-islanding Protection	
	AC Overcurrent Protection	
	AC Short Circuit Protection	
	AC Overvoltage Protection	
	DC Switch DC Surge Protection	
	AC Surge protection	
	Remote Shutdown	
	General Data	
	Operating Temperature Range (°C)	
_	Relative Humidity	
	Max. Operating Altitude (m)	
	Cooling Method	
	User Interface Communication with BMS ^{*4}	
	Communication with Meter	
	Communication with Portal	
	Weight (kg)	
	$\frac{\text{Dimension (W \times H \times D mm)}}{\text{Topology}}$	
	Self-consumption at Night (W) ^{*5}	
_	· · · · · · ·	

- Ingress Protection Rating Mounting Method
- *1: In Australia, for most of the PV module, the max. input power can achieve 2*Pn, Such as the max. input power of GW3600N-EH can achieve 7200W.
- *2: For CEI 0-21.
- *3: The grid feed in power for VDE-AR-N 4105 and NRS097-2-1 is limited 4600VA. *4: CAN communication is configured by default. If 485 communication is used,
- *4: CAN communication is configured by default. If 485 communication is used, please replace the corresponding communication line.

GOODWE

EH	GW5000N-EH	GW6000N-EH
	Li-lon	
	350	
	85 ~ 460 85	
	1	
	25	
	<u> </u>	
	5000	6000
	7500	9000
	7500 580	9000
	100 ~ 550	
	<u>85</u> 380	
	16	
	21.2	
	2	
	5000	6000
	5000 5000 / 5500*2	6000 6000 / 6600*2
SkW,	10000 (Charging 5kW,	12000 (Charging 6kW,
ikW)	Backup Output 5kW)	Backup Output 6kW)
	230 / 220*6	
	50 / 60 21.7 / 24 ^{*2}	26.1 / 28.7*2 / 27.3*7
	43.4	52.2
~1 (Ad	justable from 0.8 leading to 0.8 la <3%	gging)
	<3 %	
	5000	6000
ec)	5000 (6000@60sec) 5000	6000 (7200@60sec) 6000
	21.7	26.1
	230 (±2%)	
	50 / 60 (±0.2%) <3%	
	2070	
	<u>97.6%</u> 97.0%	
	96.6%	
	99.9%	
	Integrated	
	Integrated Integrated	
	Integrated	
	Integrated	
	Integrated	
	Integrated Type II	
	Type III	
	Integrated	
	-25 ~ +60	
	0 ~ 95%	
	3000 ^{*8}	
	Natural Convection LED, APP	
	RS485, CAN	
	RS485	
	WiFi / Ethernet (Optional) 17	
	354 × 433 × 147	
	Non-isolated	
	<10 IP65	
	Wall Mounted	
	*5: No Back-up O	utput.
	*6: For Brazil, the	
	*7: For Brazil, the	current is 27.3A.

*: Please visit GoodWe website for the latest certificates.

ET PLUS+ Series16A

5-10kW | Three Phase Hybrid Inverter

ET PLUS+ Series integrates the technical strengths that make it one of the most adaptive options in the market for flexible residential needs. The series brings values of high power generation and charging power for optimal energy harvest, flexible applications enabled by smart load control and 100% unbalanced output, and sustainable system reliability and safety. It also presents peak shaving that balances power demand and grid power imported, to effectively reduce extra grid demand. Furthermore, thanks to dry contact in the inverter, external loads such as heat pumps can also be flexibly activated to optimize energy consumption. It is a truly versatile quality investment piece that extends application scenarios and maximizes sel consumption ratios.

Smart Control for Smart Energy Smart load control

Peak shaving

Friendly & Thoughtful Design

Fanless cooling for quiet operation Elegant and compact design

Flexible & Adaptable Applications

Battery ready option Maximum 16A DC input current per string

ET PLUS+ Series 16A

Technical Data	GW5KN
Battery Input Data	
Battery Type	
Nominal Battery Voltage (V) Battery Voltage Range (V)	
Start-up Voltage (V)	
Number of Battery Input	
Max. Continuous Charging Current (A)	25
Max. Continuous Discharging Current (A) Max. Charging Power (W)	25 7500
Max. Discharging Power (W)	7500
PV String Input Data	
Max. Input Power (W)	7500
Max. Input Voltage (V)*1	
MPPT Operating Voltage Range (V) ^{*2}	
Start-up Voltage (V) Nominal Input Voltage (V)	
Max. Input Current per MPPT (A)	
Max. Short Circuit Current per MPPT (A)	
Number of MPP Trackers Number of Strings per MPPT	
AC Output Data (On-grid)	5000
Nominal Output Power (W) Nominal Apparent Power Output to Utility Grid (VA)	5000 5000
Max. Apparent Power Output to Utility Grid (VA)	5500
Max. Apparent Power from Utility Grid (VA)	10000
Max. Apparent Power Output to Utility Grid (VA) ^{*2}	5000
Nominal Output Voltage (V) Output Voltage Range (V)	
Nominal AC Grid Frequency (Hz)	
AC Grid Frequency Range (Hz)	0.5
Max. AC Current Output to Utility Grid (A) Max. AC Current From Utility Grid (A)	8.5 15.2
Power Factor	10.2
Max. Total Harmonic Distortion	
AC Output Data (Back-up)	
Back-up Nominal Apparent Power (VA)	5000
Max. Output Apparent Power without Grid (VA) ^{*3} Max. Output Apparent Power with Grid (VA) ^{*3}	<u>5000 (10000</u> 5000
Max. Output Current (A)	8.5
Nominal Output Voltage (V)	
Nominal Output Frequency (Hz) Output THDv (@Linear Load)	
Efficiency	00.00/
Max. Efficiency European Efficiency	<u>98.0%</u> 97.2%
Max. Battery to AC Efficiency	
MPPT Efficiency	
Protection	
PV Insulation Resistance Detection	
Residual Current Monitoring	
PV Reverse Polarity Protection Anti-islanding Protection	
AC Overcurrent Protection	
AC Short Circuit Protection AC Overvoltage Protection	
DC Switch	
DC Surge Protection	
AC Surge Protection	
Remote Shutdown	
General Data	
Operating Temperature Range (°C)	
Relative Humidity Max. Operating Altitude (m)	
Cooling Method	
User Interface	
Communication with BMS ¹⁵ Communication with Meter	
Communication with Neter	
Weight (kg)	
Dimension (W × H × D mm)	
Topology Self-consumption at Night (W) ^{*6}	
Ingress Protection Rating	
Mounting Method	
**	
1000V system, maximum operating voltage is 950V. ording to the local grid regulation.	

*3: Can be reached only if PV and battery power is enough.

- 44: For Chile Max. Apparent Power Output to Utility Grid (VA) and Max. Output Power (W): GW5KL(N)-ET is 5000; GW6KL-ET is 6000; GW6.5KN-ET is 6500; GW8KL(N)-ET is 8000; GW10KL(N)-ET is 10000.

GOODWE

GW6.5KN-ET GW8KN-ET GW10KN-ET Li-lor 180 ~ 600 180 8450 8450 9600 9600 10000 15000 200 ~ 850 180 620 21.2 6500 8000 10000 13000 15000 8000 15000 10000 6500 400 / 380, 3L / N / PE 0 ~ 300 50 / 60 45 ~ 65 16.5 ~1 (Adjustable from 0.8 leading to 0.8 lagging 8000 10000 6500 (13000@60sec) 8000 (16000@6 (16500@60 10000 16.5 400 / 380 <3% 98.0% 97.2% 98.29 97.59 98.2% 97.5% 99.9% Integrated Integrated Integrate Integrated Integrated Integrated Integrate Integrated Type II Type III Integrated -35 ~ +60 0~95% 4000 Natural Convection LED, APP RS485, CAN RS485 WiFi / WiFi + LAN (Optional) / 4G (Optional) 24 415 × 516 × 180 Non-isolated <15 IP66 Wall Mounted

*5: CAN communication is configured default. If RS485 communication is used, please replace the corresponding communication line

*6: No back-up output.

*7: For Austria, Max. Output Power (W): GW5KN-ET is 5000; GW6.5KN-ET is 6500: GW8KN-FT is 8000: GW10KN-FT is 10000. *: Please visit GoodWe website for the latest certificates

BT Series

5-10kW I Three phase AC-coupled retrofit inverter (HV)

which is able to upgrade existing three-phase on-grid PV systems to storage systems. The AC-coupled solution can transform any three-phase on-grid PV system into an energy storage system with batteries, enhancing grid independence and self-consumption. It is compatible with high voltage Li-Ion batteries ranging from 180 to 600V and is also equipped with UPS-level switching for a stable and reliable power supply.

Smart Control & Monitoring

<10ms UPS-level switching · Smart home integration with multi-protocol communications

Superb Safety & Reliability · IP66 ingress protection

· Quality and robust components

· Elegant and compact design

Friendly & Thoughtful Design

· Fanless cooling for quiet operation

Flexible & Adaptable Applications · 110% AC output overloading

· Wide battery voltage range 180 ~ 600V

BT Series

		GW
Battery Input Data		
Battery Type		
Nominal Battery Voltage (V)		
Battery Voltage Range (V)		
Start-up Voltage (V)		
Number of Battery Input Max. Continuous Charging (Current (A)	
Max. Continuous Dischargin		
Max. Charging Power (W)	3 • · · · · · (· ·)	
Max. Discharging Power (W)	
AC Output Data (On-gri	id)	
Nominal Output Power (W)		
Nominal Apparent Power Ou		
Max. Apparent Power Output	It to Utility Grid (VA) ^{*1*5}	:
Max. Apparent Power from L	Jtility Grid (VA)	1
Output Voltage Range (V)		
Nominal Output Voltage (V)	(11-)	
Nominal AC Grid Frequency		
AC Grid Frequency Range (Max. AC Current Output to L		
Max. AC Current From Utility		
Power Factor		
Max. Total Harmonic Distorti	on	
AC Output Data (Back-	up)	
Back-up Nominal Apparent	Power (VA)	
Max. Output Apparent Powe	er without Grid (VA) ^{*2}	5000 (10
Max. Output Apparent Powe	er with Grid (VA)	
Max. Output Current (A)		
Nominal Output Voltage (V)	(Цэ)	
Nominal Output Frequency (Output THDv (@Linear Load		
Efficiency	·	
Max. Efficiency		
European Efficiency		g
Max. Battery to AC Efficienc	у	
Protection		
PV Insulation Resistance De	tection	
Residual Current Monitoring		
Battery Reverse Polarity Pro	tection	
Anti-islanding Protection		
AC Overcurrent Protection		
AC Short Circuit Protection		
AC Overvoltage Protection		
General Data		
Operating Temperature Ran Relative Humidity	ge (°C)	
Max. Operating Altitude (m)		
Cooling Method		
User Interface		
Communication with $BMS^{^{*3}}$		
Communication with Meter		
Communication with Portal		
Weight (kg)		
Weight (kg) Dimension (W \times H \times D mm)		
Weight (kg) Dimension (W × H × D mm) Topology	٨//`4	
Weight (kg) Dimension (W × H × D mm) Topology Self-consumption at Night (V	N) ^{*4}	
Weight (kg) Dimension (W × H × D mm) Topology	N) ^{*4}	

Peak output apparent power can be reached only if PV and battery power is enough.
 Peake visit GoodWe website for the latest certificates

GO	OD	ME
----	----	----

вт	GW6K-BT	GW8K-BT	GW10K-BT
	Li-I	on	
	50		
	180 ~		
	18		
	2		
	25		
	6000	8000	10000
	6000	8000	10000
	6000	8000	10000
	6000	8000	10000
	6600	8800	11000
	12000	15000	15000
	0~3		
	400 / 380, 3		
	45 ~		
	10.5	13.5	16.5
	18.2	22.7	22.7
	~1 (Adjustable from 0.8		3)
_	<3	%	
	6000	8000	10000
60sec)	6000 (12000@60sec)	8000 (15000@60sec)	
	6000	8000 13.5	10000
	400 / 380, 3		10.5
	50 /		
	<3	%	
	97.6	5%	
	97.2%	97.5%	97.5%
	97.6	5%	
	Integr	rated	
	Integr		
	Integr Integr		
	Integr	aleu	
	-35 ~		
	0~9		
	400 Natural Co		
	LED,		
	RS485		
	RS4	185	
	WiFi,		
	2		
	415 × 51 Non-is		
	INON-IS		
	IP6		
	Wall Mo		
	Wall Mo	ounted	

corresponding communication line.

T is 5000; GW6K-BT is 6000; GW8K-BT is 8000; GW10K-BT is 10000.

ET G2 Series

6-15kW | Three Phase | Up to 3 MPPTs Hybrid Inverter (HV)

The ET G2 Series is the latest iteration of the ET Series and has been specially designed to accommodate households' increasing demand for electricity consumption while delivering additional benefits that cater to flexible residential needs.

This inverter features an elegant and sleek design that can harmonize beautifully with the house's aesthetic. With the addition of 12kW and 15kW higher power capacities, the ET G2 is now equipped to deliver even more powerful generation, allowing for optimal energy harvesting. It supports parallel connections with up to 6 units, ideal for expanding energy needs. Additionally, smart load control, 100% unbalanced output, and a focus on system reliability and safety enable versatile and sustainable applications

Smart Control & Monitoring

· Integrated dry contact for external loads Backup with UPS-level switching <10ms Peak shaving

Friendly & Thoughtful Design

Plug & Play installations

- · Elegant and compact design

COMING SOON

Superb Safety & Reliability

· IP66 ingress protection • Type II SPD on DC & AC sides

Flexible & Adaptable Applications

· · · ·

- · Maximum 16A DC input current per string
- · Up to 160% DC input oversizing · Parallel connection capability for increased output power

ET G2 Series

Technical Data	GW6000-ET-20	GW800
Battery Input Data		
Battery Type		
Nominal Battery Voltage (V) Battery Voltage Range (V)		
Start-up Voltage (V)		
Number of Battery Input	30	3
Max. Continuous Charging Current (A) Max. Continuous Discharging Current (A)	30	3
Max. Charging Power (W)	9000	120
Max. Discharging Power (W)	6600	88
PV String Input Data		
Max. Input Power (W) ^{*1}	9600	128
Max. Input Voltage (V) ^{*2} MPPT Operating Voltage Range (V)		
Start-up Voltage (V)		
Nominal Input Voltage (V) Max. Input Current per MPPT (A)		
Max. Short Circuit Current per MPPT (A)		
Number of MPP Trackers	2	2
Number of Strings per MPPT		
AC Output Data (On-grid)		
Nominal Output Power (W)	6000	80
Nominal Apparent Power Output to Utility Grid (VA) Max. Apparent Power Output to Utility Grid (VA)*3		80 80
Max. Apparent Power from Utility Grid (VA)		160
Nominal Output Voltage (V) Output Voltage Range (V) ⁴		
Nominal AC Grid Frequency (Hz)		
AC Grid Frequency Range (Hz)		
Max. AC Current Output to Utility Grid (A) ⁻⁵ Max. AC Current From Utility Grid (A)	<u>8.7</u> 15.7	<u>11</u> 21
Power Factor	10.7	21
Max. Total Harmonic Distortion		
AC Output Data (Back-up)		
Back-up Nominal Apparent Power (VA)	6000	80
Max. Output Apparent Power without Grid (VA)	6000 (12000 at 60 sec) ^{*6}	80
Max. Output Apparent Power with Grid (VA)	(12000 at 60 sec) 6000	(16000 a 80
Max. Output Current (A)	13.0 (17.4 at 60 sec)	
Nominal Output Voltage (V)		
Nominal Output Frequency (Hz) Output THDv (@Linear Load)		
Efficiency		
Max. Efficiency	98.0%	98.
European Efficiency	97.2%	97.
Max. Battery to AC Efficiency MPPT Efficiency	97.2%	97.
Protection		
PV Insulation Resistance Detection PV AFCI3.0		
Residual Current Monitoring		
PV Reverse Polarity Protection		
Battery Reverse Polarity Protection Anti-islanding Protection		
AC Overcurrent Protection		
AC Short Circuit Protection AC Overvoltage Protection		
DC Switch		
DC Surge Protection		
AC Surge Protection Remote Shutdown		_
General Data		
Operating Temperature Range (°C) Relative Humidity		
Max. Operating Altitude (m)		
Cooling Method		
User Interface Communication with BMS		
Communication with Meter		
	23	0
Communication with Portal	2.5	2
Weight (kg)	20	
Weight (kg) Dimension (W × H × D mm) Noise Emission (dB)	<30	<3
Weight (kg) Dimension (W × H × D mm) Noise Emission (dB) Topology		<3
Weight (kg) Dimension (W × H × D mm) Noise Emission (dB)		<2
Weight (kg) Dimension (W × H × D mm) Noise Emission (dB) Topology Self-consumption at Night (W) ⁷		<2
Weight (kg) Dimension (W × H × D mm) Noise Emission (dB) Topology Self-consumption at Night (W)' ⁷ Ingress Protection Rating Mounting Method Max. Input Power, not continuous for 1.6*normal powe	<30 r. Besides, in Australia,	*5: The N
Weight (kg) Dimension (W × H × D mm) Noise Emission (dB) Topology Self-consumption at Night (W) ⁷ Ingress Protection Rating	<30 r. Besides, in Australia, ichieve 2*Pn, Such as	

*3: According to the local grid regulation. *4: Output Voltage Range: phase voltage.

GOODWE

0-ET-20 GW10K-ET-20 GW12K-ET-20 GW15K-ET-20

	Li-Ion		
	500 150 ~ 720		
	150 ~ 720		
20	1	40	40
<u>30</u> 30	40 40	40 40	40 40
000	15000	18000	24000
300	11000	13200	16500
800	16000	19200	24000
	1000 120 ~ 850		
	150		
	620		
	<u>16</u> 24		
2	3	3	3
	1		
000	10000	12000	15000
000	10000	12000 12000	15000 15000
000	20000	20000	20000
	400 / 380, 3L / N / PE		
	170 ~ 290 50 / 60		
	45 ~ 65		
1.6	14.5	17.4	21.7
1.0	26.1 0.8 leading ~ 0.8 lagging	26.1	26.1
	<3%	9	
000	10000	12000	15000
000	10000	12000	15000
at 60 sec)	(18000 at 60 sec)	(18000 at 60 sec)	(18000 at 60 sec)
000 3 at 60 sec	10000 c) 21.7 (26.1 at 60 sec)	12000 21.7 (26.1at 60 sec)	15000 21.7 (26.1at 60 sec)
	400 / 380		
	50 / 60 <3%		
	<376		
.0%	98.2%	98.2%	98.2%
.2%	97.5%	97.5%	97.5%
.5%	97.5%	97.5%	97.5%
	99.5%		
	Integrated		
	Integrated Integrated		
	Integrated		
	Integrated		
	Integrated Integrated		
	Integrated		
	Integrated Integrated		
	Type II		
	Type II		
	Integrated		
	-35 ~ +60		
	<u>0 ~ 100%</u> 4000		
	Natural Convection		
	LED, WLAN + APP RS485, CAN		
	RS485, CAN RS485		
	(4G optional) + Bluetooth		
23	25 496 × 460 × 221	25	25
30	<u>496 × 460 × 221</u> <30	<45	<45
-	Non-isolated		
	<15 IP66		
	Wall Mounted		
Max AC Cu	irrent Output to on-arid load is	120 17 40 21 70 21 70	21 7A 21 7A congrately

Max. AC Current Output to on-grid load is 13A, 17.4A, 21.7A, 21.7A, 21.7A, 21.7A separately. be reached only if PV and battery power is enough. ack-up Output.

visit GoodWe website for the latest certificates.

As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice

ET 15-30kW Series

Technical Data	GW15K-ET	GW
Battery Input Data		
Battery Type		
Nominal Battery Voltage (V) Battery voltage range (V)		
Start-up Voltage (V)		
Number of Battery Input Max. Continuous Charging Current (A)	1 50	
Max. Continuous Discharging Current (A)	50	
Max. Charging Power (W)	15000 15000	
Max. Discharging Power (W)	15000	
PV String Input Data		
Max. Input Power (W) ⁻¹ Max. Input Voltage (V) ⁻²	22500	
MPPT Operating Voltage Range (V)		
Start-up Voltage (V) Nominal Input Voltage (V)		
Max. Input Current per MPPT (A)		
Max. Short Circuit Current per MPPT (A) Number of MPP Trackers	2	
Number of Strings per MPPT	2/2	
AC Output Data (On-grid)		
Nominal Output Power (W)	15000	
Nominal Apparent Power Output to Utility Grid (VA)	15000	
Max. Apparent Power Output to Utility Grid (VA) ^{*3*11} Max. Apparent Power from Utility Grid (VA) ^{*9}	16500 15000	
Nominal Output Voltage (V)		
Output Voltage Range (V) ^{*4} Nominal AC Grid Frequency (Hz)		
AC Grid Frequency Range (Hz)		
Max. AC Current Output to Utility Grid (A) ¹⁸	23.9 21.7	
Max. AC Current From Utility Grid (A) ⁻¹⁰ Power Factor	21.7	
Max. Total Harmonic Distortion		
AC Output Data (Back-up)		
Back-up Nominal Apparent Power (VA)	15000	
Max. Output Apparent Power without Grid (VA) ⁵ Max. Output Apparent Power with Grid (VA)	15000 (18000@60s, 24000@3s) 15000	20000 (240
Max. Output Current (A)	22.7 (27.3@60s, 36.4@3s)	30.3 (36.
Nominal Output Voltage (V) Nominal Output Fregency (Hz)		
Output THDv (@Linear Load)		
Efficiency		
Max. Efficiency		
European Efficiency		
Max. Battery to AC Efficiency MPPT Efficiency		
Protection		
PV String Current Monitoring		
PV Insulation Resistance Detection		
Residual Current Monitoring PV Reverse Polarity Protection		
Battery Reverse Polarity Protection		
Anti-islanding Protection AC Overcurrent Protection		
AC Short Circuit Protection		
AC Overvoltage Protection DC Switch ^{*6}		
DC Switch DC Surge Protection		
AC Surge Protection		
AFCI Rapid Shutdown		
Remote Shutdown		
General Data		
Operating Temperature Range (°C)		
Relative Humidity		
Max. Operating Altitude (m) Cooling Method		
User Interface		
Communication with BMS Communication with Meter		
Communication with Portal		
Weight (kg) Dimension (W × H × D mm)	48	
Noise Emission (dB)	<45	
Topology		
Self-consumption at Night (W) ^{*7} Ingress Protection Rating		
Mounting Method		
Australia, for most of the PV module, the max.Input po		as *9: \
e max.input power of GW15K-ET can achieve 30000W ot continuous for 1.5*normal power.	. Besides, Max. Input Power,	
or 1000V system, Maximum operating voltage is 950V.		*10:
ccording to the local grid regulation.		
utput Voltage Range: phase voltage. an be reached only if PV and battery power is enough.		*11:
C Switch: GHX6-55P (for Australia).		11.
o Back-up Output.		*: Fo
or 380V grid, the Max. AC Current Output to Utility Grid or GW20K-ET, 41.7A for GW25K-ET, 49.8A for GW29.9K		A 31 *: Pl
	, solor the Gridon El.	*: A

ET Series

15-30kW I Three Phase Up to 3 MPPTs I Hybrid Inverter (HV)

GoodWe ET 15-30kW Series inverter is ideal for large residential or small commercial and industrial applications. As the core of the energy storage solution, the highvoltage inverters facilitate powerful energy backup and load management for optimized autonomy and reduced energy cost. The ET inverters also present peak shaving that balances power demand and grid power imported, to effectively reduce extra grid demand. Furthermore, thanks to dry contact in the inverter, external loads such as heat pumps can also be flexibly activated to optimize energy consumption. The series can be combined with a range of battery capacities and brands, including the GoodWe Lynx Home F.

Smart Control & Monitoring · Integrated dry contact for external loads · Peak shaving

Friendly & Thoughtful Design
• Elegant and compact design
• Plug & Play installations

Flexible & Adaptable Applications

Max. 15A DC input current per string
 Up to 150% DC input oversizing

GOODWE

20K-ET	GW25K-ET	GW29.9K-ET	GW30K-ET
	Li-lon 500		
	200 ~ 800		
	180		
1 50	2 50 × 2	2 50 × 2	2 50 × 2
50	50 x 2	50 x 2	50 x 2
0000	25000	30000	30000
0000	25000	30000	30000
0000	37500	45000	45000
	1000		
	200 ~ 850		
	200 620		
	30		
	38		
2	3	3	3
2/2	2/2/2	2/2/2	2/2/2
0000	25000	29900	30000
0000	25000	29900	30000
2000	27500	29900	33000
0000	25000 380 / 400, 3L / N / PE	30000	30000
	0 ~ 300		
	50 / 60		
	45 ~ 65		
31.9	39.9	43.3	47.8
29.0 ~1 (Adjust:	36.2 able from 0.8 leading to 0	43.3 8 lagging)	43.5
1 (//ajuoti	<3%	io lagging)	
	05000	00000	30000
	25000	29900	
@60s, 32000@3s)	25000 (30000@60s)	30000 (36000@60s)	30000 (36000@60s)
0@60s, 32000@3s) 00000	25000 (30000@60s) 25000 37.9 (45.5@60s)		
0@60s, 32000@3s) 00000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400	30000 (36000@60s) 29900	30000 (36000@60s) 30000
20000 0@60s, 32000@3s) 20000 @60s, 48.5@3s)	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0@60s, 32000@3s) 00000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0@60s, 32000@3s) 20000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0@60s, 32000@3s) 20000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0%	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0@60s, 32000@3s) 00000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5%	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5%	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5%	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5%	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9%	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% Integrated Integrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% integrated integrated integrated integrated integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% Integrated Integrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 97.5% 97.5% 99.9% 99.9% 99.9% 1ntegrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% 1ntegrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% 1ntegrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% 1ntegrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% 1ntegrated Integrated	30000 (36000@60s) 29900	30000 (36000@60s) 30000
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% 1ntegrated Integ	30000 (36000@60s) 29900	30000 (36000@60s) 30000
@60s, 32000@3s) 0000 960s, 48.5@3s)	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900 45.5 (54.5@60s)	30000 (36000@60s) 30000 45.5 (54.5@60s)
0000 0000 0000 0000 0000 0000 0000 0000 0000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 97.5% 99.9% Integrated Soc 95% 4000 Smart Fan Cooling LED, WLAN + APP RS485 / CAN RS485 WiFi / 4G 54	30000 (36000@60s) 29900	30000 (36000@60s) 30000
(#60s, 32000@3s) 0000 060s, 48.5@3s) 	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% Integrated Integ	30000 (36000@60s) 29900 45.5 (54.5@60s)	30000 (36000@60s) 30000 45.5 (54.5@60s)
(#60s, 32000@3s) 0000 060s, 48.5@3s) 	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 99.9% Integrated	30000 (36000@60s) 29900 45.5 (54.5@60s)	30000 (36000@60s) 30000 45.5 (54.5@60s)
@60s, 32000@3s) 0000 %60s, 48.5@3s) 	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 99.9% 1ntegrated Integ	30000 (36000@60s) 29900 45.5 (54.5@60s)	30000 (36000@60s) 30000 45.5 (54.5@60s)
0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000	25000 (30000@60s) 25000 37.9 (45.5@60s) 380 / 400 50 / 60 <3% 98.0% 97.5% 97.5% 97.5% 97.5% 99.9% Integrated In	30000 (36000@60s) 29900 45.5 (54.5@60s)	30000 (36000@60s) 30000 45.5 (54.5@60s)

*9: When the load is connected to the inverter's backup port, the Max. Apparent Power from Utility Grid can reach to 22.5K for GW15K-ET, 30K for GW20K-ET, 33K for GW25K-ET, 33K for GW29.9K-ET, and 33K for GW30K-ET respectively.

Solviol GW29, State and the analysis of the state of the

GW29.9K-ET, and 50A for GW30K-ET respectively. *11: For Austria, Max. Output Power (W) is 15K for GW15K-ET, 20K for GW20K-ET, 25K for GW25K-ET, 29.9K for GW29.9K-ET, and 30K for GW30K-ET. *: For 380V grid, the Nominal Output Current is 22.7A for GW15K-ET, 30.3A for GW20K-ET,

For 380V grid, the Nominal Output Current is 22.7A for GW15K-ET, 30.3A for GW20K-ET, 37.9A for GW25K-ET, 45.3A for GW29.9K-ET, 45.5A for GW30K-ET.

Please visit GoodWe website for the latest certificates.

All pictures shown are for reference only. Actual appearance may vary.

ESA Series

5kW+10.8kWh I Single phase Home storage solution (LV)

GoodWe ESA Series is an all-in-one solar and storage solution that integrates the inverter, battery charger, UPSlevel switching, and battery enclosure into a pre-wired modular system for easier and faster installation. The compact, elegantly designed, and robust unit is IP65 rated, so it can be mounted either inside or outside withstanding all weather conditions and brings a reduction of installation time of up to 50%.

Smart Control & Monitoring

<10ms UPS-level switching
 Smart home integration with multi-protocol communications

Superb Safety & Reliability

Reliable LFP technology with high cycle stability
 IP65 ingress protection

Flexible & Adaptable Applications

10.8kWh battery capacity with 100A maximum discharging current Expandable storage

Friendly & Thoughtful Design

All-in-one modularized design
 Pre-wired components

ESA Series (14A)

Technical Data		
Battery Enclosure Data		
Weight (kg)		
Dimension (W \times H \times D mm)		
Mounting Method		
Ingress Protection Rating		
Inverter Data		
Battery Input Data		
Battery Type ^{*1}		
Nominal Battery Voltage (V)		
Battery Voltage range (V)		
Max. Continuous Charging Current (A) ^{*1}		
Max. Continuous Discharging Current (A)*1		
Max. Charging Power (W)		
Max. Discharging Power (W)		
PV String Input Data		
Max. Input Power (W)		
Max. Input Voltage (V)		
MPPT Operating Voltage Range (V)		
Start-up Voltage (V)		
Nominal Input Voltage (V)		
Max. Input Current per MPPT (A)		
Max. Short Circuit Current per MPPT (A)		
Number of MPP Trackers		
Number of Strings per MPPT		
AC Output Data (On-grid)		
Nominal Apparent Power Output to Utility G	arid (VA) ^{*5}	
Max. Apparent Power Output to Utility Grid	(VA)*2	
Max. Apparent Power from Utility Grid (VA)		
Nominal Output Voltage (V)		
Nominal AC Grid Frequency (Hz)		
Max. AC Current Output to Utility Grid (A)		
Max. AC Current From Utility Grid (A)		
Power Factor		
Max. Total Harmonic Distortion		
AC Output Data (Back-up)		
Back-up Nominal Apparent Power (VA)		
Max. Output Apparent Power (VA) ^{*3}		
Max. Output Current (A)		
Nominal Output Voltage (V)		
Nominal Output Frequency (Hz)		
Output THDv (@Linear Load)		
Technical Data	GW5048-ESA	
Technical Data	GW3040-ESA	Te
Efficiency		Ge
Max. Efficiency	97.6%	Op Rel
European Efficiency	97.0%	Ma

 AC Short Circuit Protection
 Integrated

 AC Overvoltage Protection
 Integrated

 *1: The actual charge and discharge current also depends on the battery.
 *2: 4600 for VDE 0126-1-1 &VDE-AR-N4105 &NRS 097-2-1, 5100 for CEI 0-21 (GW5048D-ES).

 *3: Peak output apparent power can be reached only if PV and battery power is enough.
 *3: Peak output apparent power can be reached only if PV and battery power is enough.

94.0%

99.9%

Integrated

Integrated

Integrated

Integrated

Integrated

Max. Battery to AC Efficiency

Residual Current Monitoring

Anti-islanding Protection

AC Overcurrent Protection

PV Reverse Polarity Protection

PV Insulation Resistance Detection

MPPT Efficiency

Protection

 3: Peak output apparent power can be reached only if PV and battery power is enough.
 *4: CAN communication is configured by default. If 485 communication is used, please replace the corresponding communication line.

GOODWE

GW5048-ESA
37
516 × 1205 × 280
Wall Mounted
IP54
Li-Ion
48
40 ~ 60
90
100
4600
4600
6500
580
125 ~ 550
125
360
14
17.5
2
1
5000
5000
9200
230
50 / 60
22.8
40
~1 (Adjustable from 0.8 leading to 0.8 lagging)
<3%
4600
4600 (6900@10sec)
20
230 (±2%)
50 / 60 (±0.2%)
<3%

Technical Data **GW5048-ESA** General Data Operating Temperature Range (°C -25 ~ +60 Relative Humidity $0 \sim 95\%$ Max. Operating Altitude (m) 3000 Cooling Method Natural Convection LED, APP User Interface Communication with BMS*2 RS485, CAN Communication with Meter RS485 Communication with Portal WiFi 44 Weight (kg) Dimension (W \times H \times D mm) $516 \times 832 \times 290$ Noise Emission (dB) <25 Topology Non-isolated Self-consumption at Night (W) <13 Ingress Protection Rating IP65 Mounting Method Wall Mounted

*5: 4600 for VDE 0126-1-1 &VDE-AR-N4105 &NRS 097-2-1 &CEI 0-21.

*: When there is no battery connected, inverter starts feeding in only if string voltage is higher than 200V.

*: Please visit GoodWe website for the latest certificates

Lynx A G2 Series

5kWh I Low Voltage Battery

Harnessing the reliability of lithium iron phosphate (LFP) battery cell technology, GoodWe's low-voltage Lynx A G2 Series is crafted to meet residential energy needs. Focused on optimizing self-consumption and providing reliable solar power backup, this system offers homeowners a seamless energy solution. With its high energy density, it efficiently stores energy in limited spaces.

The Lynx A G2 Series battery provides continuous discharge current of up to150A, even with just a single cell, and offers the flexibility to connect up to 30 modules in parallel, provided there is sufficient space. With its impressive battery cycle life, investing in this battery ensures enduring value for homes.

Smart Control

Remote diagnosis & update via inverter · Auto reboot after undervoltage

Superb Safety & Reliability

Reliable LFP technology with high cycle stability · Long life cycle, >6000 times (80% EOL)

COMING SOON

Friendly & Thoughtful Design

Compact and lightweight design · Multiple installation methods supported

Flexible & Adaptable Applications

Scalable up to 150kWh, 30 modules in parallel Compatible with GoodWe residential storage inverters

Lynx A G2 Series

Technical Data	LX A5.0-30
Usable Energy (kWh) ^{*1}	5
Battery Module	LX A 5.0-30
Cell Type	LFP (LiFePO4)
Operating Voltage Range (V)	45.6 ~ 57.6
Nominal Charge Current (A) ^{*2}	60
Max. Continuous Charge Current (A) ^{*3}	90
Nominal Discharge Current (A) ^{*4}	100
Max. Continuous Discharge Current (A) ^{*5}	150
Max. Pulse Disccharging Current (A) ^{*5}	200 (10s)
Communication	External: CAN, Internal: CAN
Ambient Temperature (°C)	0 <t≤40°c (recommend="" 10<t≤30°c)<="" td=""></t≤40°c>
Operating Temperature (°C)	Charge: 0 <t≤55°c, -20<t≤55°c<="" discharge:="" td=""></t≤55°c,>
Storage Temperature (°C)	-20°C ~ +45°C (Short-term, within 1 month), 0°C ~ +35°C (Long-term within 1 year)
Maximum Storage Time	12 Months (maintenance-free)
Relative Humidity	5 ~ 85%
Max. Operating Altitude (m)	4000
Weight (kg)	≤44
Dimensions (W × H × D mm)	442 × 133 × 520 (Core part) 483 × 133 × 559 (Maximum)
Ingress Protection Rating	IP20
Mounting Method	Cabinet / Landing / Wall mount
Round-trip Efficiency ^{*6}	≥94%
Cycle Life ^{°6}	Cell: 6000Cycles (80%EOL), 8000Cycles (70%EOL)
Warranty	10 Years
Total Discharge Energy (MWh)	≥16.4 (EOL80%)
Safety	IEC62619, IEC63056, N140
EMC	EN IEC61000-6-1, EN IEC61000-6-2, EN IEC61000-6-3, EN IEC61000-6-4
Transportation	UN38.3, ADR
Environment	ROHS, REACH

when the SOC is too low or too high. *3: When working temperature is less than 25°C, the maximum continuous / pulse charging current decreases; Regardless of the temperature, the maximum continuous / pulse charging current will decrease when the SOC is too low or too high. *4: When working temperature is less than 0°C, the standard continuous discharge current decreases; Regardless of the temperature, the standard continuous discharge current will decrease when the SOC is too low or too high. *5: When working temperature is less than 10°C, the maximum continuous / pulse discharge current decreases; Regardless of the temperature, the maximum continuous / pulse discharge

current will decrease when the SOC is too low or too high. *6: 25 ± 2°C, 2.85 - 3.6V, 0.2C CC charging, 0.2C CC discharging. *: Please visit GoodWe website for the latest certificates.

*: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

Lynx Home U Series

Technical E	Data	LX U5.4-20	2*LX U5.4-20	3*LX U5.4-20	4*LX U5.4-20	5*LX U5.4-20	6*LX l
Usable Energy (kW	/h) ^{*1}	5.4	10.8	16.2	21.6	27	33
Cell Type				LFP (LiF	FePO4)		
Nominal Voltage (V)			51	.2		
Operating Voltage	Range (V)			47.5 ~	57.6		
Nominal Dis- / Cha	rge Current (A) ^{*2}	50	100	100	100	100	1
Nominal Power (kW	/) ^{*2}	2.56	5.12	5.12	5.12	5.12	5.
Communication				CAN, F	R\$485		
Weight (kg)		57	114	171	228	285	3
Dimensions (W × H	I × D mm)			505 × 570 × 17	5 (LX U5.4-20)		
Operating Tempera	ature Range (°C)		C	harge: 0 ~ +50 / Di	ischarge: -10 ~ +5	0	
Relative Humidity				0~9	95%		
Max. Operating Alt	itude (m)			200	00		
Ingress Protection	Rating			IPe	65		
Mounting Method				Wall Mounted	I / Grounded		
	Safety		I	EC62619, IEC6305	6, IEC 62040, CEC		
Standard and Certification	EMC	CE, RCM					
Transportation				UN3	88.3		

Lynx Home U Series

5.4-32.4kWh I Low voltage battery

Lynx Home U Series is a low-voltage lithium battery specially designed for residential applications with superior performance. Compatible with GoodWe ES/EM/SBP inverters, Lynx Home U Series comes with GoodWe one-stop-shop solution saving you considerable time and effort. It can be used flexibly for self-consumption and backup applications with a wide capacity range scalable from 5.4 – 32.4kWh. The installation and commissioning are easier and faster than ever with a simple Plug and Play wiring and module auto recognition during system setup. Meet this highly efficient solution for storing your solar power and use it whenever needed.

Smart Control

Remote diagnosis & update · Auto reboot after undervoltage

Superb Safety & Reliability

• Reliable LFP technology with high cycle stability · IP65 protection for outdoor installation safety

Friendly & Thoughtful Design Auto-recognition modules · Plug & Play wiring

Flexible & Adaptable Applications

5.4 – 32.4kWh wide capacity range · Compatible with GoodWe ES/EM/SBP inverters

Heat contains, Cen voltage 2.0 ~ 30.00, 0.02 charge a visual get at +20 ±2. On ballety systems
 Nominal Dis- / Charge Current and power derating will occur related to Temperature and SOC.
 Please visit GoodWe website for the latest certificates.

Lynx Home D Series

Technical Data			
Usable Energy (kWh) ^{*1}			
Cell Type			
Nominal Voltage (V)			
Output Voltage (V)			
Nominal Power (kW)			
Peak Power			
Operating Temperature R	lange (°C) ⁻²		
Relative Humidity	Relative Humidity		
Max. Operating Altitude (m)		
Communication			
Weight (kg)	re		
Dimensions (W \times H \times D n	nm)		
Ingress Protection Rating			
Mounting Method			
_	Safety		
Standard and Certification	EMC		
	Transportation		
1. Test conditions 100% DOD 0.00	bargo & dischargo at 1.25 +3°C for battery system at beginning		

*2: Load derating may occur due to fluctuations in ambient temperature.

: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary. *: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

Lynx D Series

5.0kWh I High Voltage Battery

GoodWe's Lynx D Series is a high-voltage lithium battery specially designed for residential applications with superior performance. Compatible with GoodWe residential energy storage inverters, Lynx D Series comes with one-stop-shop solutions saving you considerable time and effort. This versatile system serves effectively in scenarios focused on self-consumption and backup power needs. With its sleek and modern design, it seamlessly blends into residential settings. The installation and commissioning have been made quicker and easier than ever with a user-friendly plug and play wiring system. Moreover, Lynx D batteries are engineered to support a mix of old and new battery packs, ensuring adaptable expansion and hassle-free replacement options.

Smart Control

Reliable LFP technology with high cycle stability · IP66 protection for outdoor installation safety

Supports mixing new and old battery packs for flexible expansion

LX D5.0-10	
5	
LFP (LiFePO4)	
Charge: 435; Discharge: 380	
320 ~ 480	
3	
5kW, 10s	
Charge: 0 ~ +53; Discharge: -20 ~ +53	
0 - 95%	
4000	
CAN	
52	
700 × 380 × 170	
IP66	
Floor stacked / Wall-mounted	
IEC62619, IEC60730, VDE2510-50, CE, CEC	
CE, RCM	
UN38.3	
ning life. System Usable Energy may vary with different Inverter.	

Lynx Home F Plus+ Series

Technical D	ata	LX F6.6-H
Usable Energy (kWh	6.55	
Battery Module		
Number of Modules	2	
Cell Type		
Nominal Voltage (V)		204.8
Operating Voltage F	lange (V)	182.4 ~ 230.4
Nominal Dis- / Char	ge Current (A) ^{*2}	
Nominal Power (kW)	*2	5.12
Operating Temperat	ure Range (°C)	
Relative Humidity		
Max. Operating Altit		
Communication		
Weight (kg)		115
Dimensions (W \times H \times D mm)		600 × 610 × 380
Ingress Protection Rating		
Mounting Method		
	Safety	
Standard and Certification	EMC	
	Transportation	

*1: Test conditions, 100% DOD, 0.2C charge & discharge at +25±2°C for battery system at beginning life. System usable energy may vary with different inverter. *2: Nominal dis-/charge current and power derating will occur related to temperature and SOC. *: Please visit GoodWe website for the latest certificates.

Lynx Home F Plus+ Series

6.6-16.4kWh I High voltage battery

GoodWe high-voltage battery Lynx Home F Plus+ Series is a perfect match and a highlight of GoodWe one-stop-shop energy storage solution realizing the remote monitoring of the whole energy storage system with a single App. It offers a wide capacity range from 6.6kWh to 16.4kWh, and the expandable parallel connection of up to 8 towers allows for a maximum capacity of 131kWh. Therefore, it provides comprehensive energy storage options to meet demanding project requirements, from self-consumption optimization to backup usage. The stackable self-detecting modules make the system especially easy to install and maintain. The reliable lithium iron phosphate (LFP) battery cell technology ensures maximum safety and a longer life cycle. Moreover, Lynx Home F PLUS+ is compatible with GoodWe BH/EH/BT/ET inverters. Get ready with Lynx Home F PLUS+ Series for robust power storage for your life.

Smart Control

Remote diagnosis & update · Auto reboot after undervoltage

Superb Safety & Reliability

Reliable LFP technology with high cycle stability IP55 protection for outdoor installation safety

Friendly & Thoughtful Design Stackable auto-recognition modules

· Plug & Play wiring

Flexible & Adaptable Applications

· 6.6 – 16.5kWh wide capacity range · Up to 8 towers in parallel (131kWh)

LX F9.8-H	LX F9.8-H LX F13.1-H				
9.83	13.10	16.38			
LX F3.3-H: 102	2.4V 3.27kWh				
3	4	5			
LFP (LiF	ePO4)				
307.2	409.6	512.0			
273.6 ~ 345.6	364.8 ~ 460.8	456.0 ~ 576.0			
25	5				
7.68	10.24	12.80			
Charge: 0 ~ +50; Discharge: -20 ~ +50					
0 ~ 9					
200	00				
CA	N				
158	201	244			
600 × 765 × 380	600 × 920 × 380	600 × 1075 × 380			
IP5	5				
Grounded					
IEC62619, IEC62040, VDE2510-50, CEC, CE					
CE, RCM					
UN38.3					

Lynx F G2 Series

6.4-28.8kWh I High Voltage Battery

The GoodWe Lynx F G2 Series high-voltage battery is an ideal component and a highlight of the comprehensive GoodWe one-stop-shop energy storage solution. With a capacity range of 6.4kWh to 28.8kWh and the option to expand through parallel connection of up to 8 towers, the Lynx F G2 Series offers a broad range of energy storage solutions that cater to diverse project requirements, from self-consumption optimization to backup usage.

Installation and maintenance of the system are made easy with the stackable self-detecting modules. The reliable lithium iron phosphate (LFP) battery cell technology ensures maximum safety and a longer life cycle. In addition, the Lynx F G2 is compatible with GoodWe BH/EH/BT/ET inverters, further enhancing its versatility and suitability for various energy storage applications.

Smart Control & Monitoring Remote diagnosis & update via inverter · Auto reboot after undervoltage

Superb Safety & Reliability

· Reliable LFP technology with high cycle stability · IP55 protection for outdoor installation safety

Friendly & Thoughtful Design Stackable auto-recognition modules

· Plug & Play wiring

Flexible & Adaptable Applications

· Flexible capacity and stackable modules · Up to 8 towers in parallel (230kWh)

Lynx F G2 Series

Technic	al Data	LX F6.4-H-20	LX F9.6-H-20	LX F12.8-H-20	LX F16.0-H-20	LX F19.2-H-20	LX F22.4-H-20	LX F25.6-H-20	LX F28.8-H-2
Usable Energ	gy (kWh) ^{*1}	6.4	9.6	12.8	16	19.2	22.4	25.6	28.8
Battery Modu	le				LX F3.2-20:	64V 3.2kWh			
Number of M	odules	2	3	4	5	6	7	8	9
Cell Type					LFP (Li	FePO4)			
Nominal Volta	age (V)	128	192	256	320	384	448	512	576
Operating Vol	tage Range (V)	114.8 ~ 144.4	172.2 ~ 216.6	229.6 ~ 288.8	287.0 ~ 361.0	344.4 ~ 433.2	401.8 ~ 505.4	459.2 ~ 577.6	516.6 ~ 649
Nominal Dis- Charge Curre					3	5			
Nominal Pow	er (kW) ^{*2}	4.48	6.72	8.96	11.20	13.44	15.68	17.92	20.16
Operating Ter Range (°C)	mperature			Cha	arge: 0 ~ +50; D	ischarge: -20 ~ ·	+50		
Relative Hum	idity				0 ~	95%			
Max. Operati	ng Altitude (m)				30	00			
Communicati	on				C/	AN			
Weight (kg)		86	120	154	188	222	256	290	324
Dimensions (W \times D \times H m	ım)	600 × 380 × 559	600 × 380 × 715	600 × 380 × 871	600 × 380 × 1027	600 × 380 × 1183	600 × 380 ×1339	600 × 380 × 1495	600 × 380 × 1651
Ingress Prote	ction Rating				IP55 (Outdo	oor / Indoor)			· · · · · · · · · · · · · · · · · · ·
Mounting Me	thod				Grou	nded			
	Safety			IEC62619,	IEC62040-1, IEC	C63056, VDE251	0, CE, CEC		
Standard and Certification	EMC				CE,	RCM			
	Transportation		UN38.3						

*1: Test conditions, 100% DOD, 0.2C charge & discharge at +25 ±2°C for battery system at beginning life.System Usable Energy may vary with different Inverter. *2: Nominal Dis- / Charge Current and power derating will occur related to Temperature and SOC.

*: Please visit GoodWe website for the latest certificates. *: All pictures shown are for reference only. Actual appearance may vary.

HCA Series AC Charger I Single Phase-7kW Three Phase-11/22kW

The GoodWe HCA EV Charger allows homeowners to use the energy drawn from PV rooftops to charge electric vehicles (EVs), providing a highly cost-effective and environmental-friendly option for fast charging of EVs at home. With a GoodWe HCA EV Charger paired with a PV and energy storage system, EVs can be charged for free with 100% surplus solar energy. Moreover, by integrating seamlessly with GoodWe's monitoring platform SEMS, the PV and charging systems can be managed with a single app, allowing homeowners to monitor, control, and optimize EV charging anywhere. Its compact and lightweight design makes it easy to install and maintain.

 \langle

Modern & User-friendly Design · Easy to install and maintain · Wall-mounted or pole-mounted design

Superb Safety & Reliability

Built-in 6mA DC residual current detection
 IP66 design for indoor/outdoor use

Remote Control & Monitoring

Intelligent monitoring & scheduling
 Manage PV and charging systems via SEMS

Flexible & Adaptable Applications

Compatible with all branded EVs
 Integrates with new & existing PV and storage systems

HCA Series

Technical Data	GW7K-HCA	GW11K-HCA	GW22K-HCA	
Input				
Nominal Input Voltage (V)	230, L / N / PE	400, 3L / N / PE	400, 3L / N / PE	
Nominal Input Current (A)	32	16	32	
Nominal AC Grid Frequency (Hz)		50 / 60		
Output				
Nominal Output Power (W)	7000	11000	22000	
Nominal Output Voltage (V)	230	400	400	
Nominal Output Current (A)	32	16	32	
Nominal Output Frequency (Hz)		50 / 60		
Protection				
Residual Current Protection		Integrated		
Overcurrent Protection		Integrated		
Short Circuit Protection		Integrated		
Overvoltage Protection		Integrated		
Over Temperature Protection		Integrated		
Ground Fault Protection		Integrated		
AC Surge Protection		Type III		
Emergency Power Off		Integrated		
General Data				
Operating Temperature Range (°C)		-30 ~ +55		
Relative Humidity	5% ~ 95% (Non-condensing)			
Max. Operating Altitude (m)		2000		
Cooling Method		Natural Convection		
User Interface		APP, LED		
Start Method		WLAN + APP		
Communication		Bluetooth, Wi-Fi		
Communication Protocols		GOODWE		
Weight (kg)	5	6	6	
Dimension (W \times H \times D mm)		208 × 450 × 150		
Noise Emission (dB)		<20		
Standby Power (W)		<6		
Ingress Protection Rating		IP66 ^{°1}		
Output Cable & Connector		6m Cable IEC Type2		
Installation		Indoors or outdoors		
Mounting Method		Wall / Floor (With floor post)		
	Type A + 6mA DC Fault Current Protection			

*1: Ingress Protection Rating: Charging Plug IEC type 2 is IP55. *: Please visit GoodWe website for the latest certificates.

GOO	Dh	IE
-----	----	----

COMMERCIAL & INDUSTRIAL PV INVERTERS

Inverter

- SMT
- LVSMT
- MT
- LVMT
- HT
- GT

SMT Series 25-36kW | Three Phase | 3 MPPTs

The GoodWe SMT Series three-phase inverter is ideal for commercial rooftop system solutions. The SMT series achieves maximum efficiency of 98.8% and features unique design highlights, including solid capacitors, fusefree design, and optional Arc Fault Circuit Interrupter (AFCI) function. These new features ensure a longer lifespan and a higher safety level of operation, allowing for an improved user experience. With a compact design and weight of just 40kg, the SMT series is more convenient to install. With a maximum DC input voltage of 1100V, a wider MPPT range for complex rooftops, and a start-up voltage of 180V, the SMT series guarantees an earlier generation of power and a longer working time to maximize long-term returns and profitability in safe operating conditions.

Smart Control & Monitoring String level monitoring

· Dynamic power export limit

Superb Safety & Reliability Optional Arc-fault circuit interrupter* Optional Type II SPD on both DC and AC* Optimal Generation for Higher Return

98.8% Max. Efficiency · Up to 130% DC input oversizing & 110% AC output overloading

Friendly & Thoughtful Design

40kg compact design • Power line communication optional*

SMT Series

Technical Data	GW25K-MT
Input	
Max. Input Voltage (V)	
MPPT Operating Voltage Range (V)	
Start-up Voltage (V)	
Nominal Input Voltage (V)	
Max. Input Current per MPPT (A)	
Max. Short Circuit Current per MPPT (A)	
Number of MPP Trackers	
Number of Strings per MPPT	
Output	
Nominal Output Power (kW)	25.0
Nominal Output Apparent Power (kVA)	25.0
Max. AC Active Power (kW)	27.5*2
Max. AC Apparent Power (kVA)	27.5*3
Nominal Output Voltage (V)	400 ^{*4} , 3L / N / PE or 3L / PE 4
Output Voltage Range (V)	
Nominal AC Grid Frequency (Hz)	
AC Grid Frequency Range (Hz)	
Max. Output Current (A)	40.0
Power Factor	
Max. Total Harmonic Distortion	
Efficiency	
Max. Efficiency	98.7%
European Efficiency	98.4%
Protection	
PV String Current Monitoring	
PV Insulation Resistance Detection	
Residual Current Monitoring	
PV Reverse Polarity Protection	
Anti-islanding Protection	
AC Overcurrent Protection	
AC Short Circuit Protection	
AC Overvoltage Protection	
DC Switch	
DC Surge Protection	
AC Surge Protection AFCI	
Emergency Power Off Remote Shutdown	
PID Recovery	
*	
General Data	
Operating Temperature Range (°C)	
Relative Humidity	
Relative Humidity Max. Operating Altitude (m)	
Relative Humidity Max. Operating Altitude (m) Cooling Method	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols Weight (kg)	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols Weight (kg) Dimension (W × H × D mm)	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols Weight (kg) Dimension (W × H × D mm) Topology	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols Weight (kg) Dimension (W × H × D mm) Topology Self-consumption at Night (W)	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols Weight (kg) Dimension (W × H × D mm) Topology Self-consumption at Night (W) Ingress Protection Rating	
Relative Humidity Max. Operating Altitude (m) Cooling Method User Interface Communication Communication Protocols Weight (kg) Dimension (W × H × D mm) Topology Self-consumption at Night (W)	

*4: For Brazil Nominal Output Voltage is 380V, 3L / N / PE or 3L / PE.

*5: For Australia DC Switch is PV2 (Integrated).

GOO	DME
-----	-----

GW36K-MT

	10	0	2	-MT
יהיו	N /			- 1/1
	_			

GW25.5K-WIT	GWJOR-WIT	GWS0K-WIT
11		
200 ~		
18		
60	0	
37		
	3	
	2	
-	-	
29.9	30.0	36.0*1
29.9	30.0	36.0*1
29.9	33.0 ^{*2}	36.0 ^{*2}
29.9	33.0 ^{*3}	36.0*3
400, 3L / N / PE or 3L / PE	400 ^{*4} , 3L / N / I	PE or 3L / PE
320 ~	~ 460	
50 /		
47.5 ~ 51.5 /		
43.3	48.0	53.3
~1 (Adjustable from 0.8		
<3	3%	
98.8%	98.8%	98.8%
98.5%	98.5%	98.5%
Integ		
Integ		
Integ Integ		
Integ		
Integr	ated ^{*5}	
Type III (Type	e II Optional)	
Type III (Type	e II Optional)	
Opti	onal	
Optic	onal ^{*6}	
Opti		
Opti	onal	
-30 ~		
0~1		
30 Smart Fai		
LED, LCD (Option		
RS485, WiFi or 4G		
Modbus-RTU (Sur		
40		
480 × 59		
Non-is	olated	
<	1	
IP	65	
MC4 (Ma	,	
OT / DT Termina	al (Max. 25mm²)	
	For Indian Emergency Power Off	
	For Brazil Communication is RS4 Intional functions or devices are in	

GW30K-MT

80K-MT is 30; GW36K-MT is 36.

*: Optional functions or devices are purchased separately. *: Please visit GoodWe website for the latest certificates.

SMT Series

50-60kW | Three Phase | Up to 6 MPPTs

GoodWe SMT 50-60kW Series inverter is ideal for medium and large-scale commercial installations. Harvest solar energy and generate environmental-friendly power for increased return on investment brought by high yields with your commercial PV system. Its unique fusefree design makes it exceptionally easy to maintain for operators, saving time and money. The superb safety design provides reliable protections in outdoor installation and guarantees stable usage and generation even in extreme conditions. SMT 50-60kW Series is a pioneering inverter for your business and value.

Smart Control & Monitoring Remote data monitoring

Superb Safety & Reliability

Multi-protocol compatibility

Type II Surge Protection for both DC and AC · IP65 ingress protection

Friendly & Thoughtful Design

200V-950V wide input operating voltage range Fuse-free design

High Power Generation for High Returns

· Maximum 15A DC input current per string 150% DC input oversizing & 110% AC output overloading

SMT Series

Technical Data

Input

- Max. Input Voltage (V)
- MPPT Operating Voltage Range (V)
- Start-up Voltage (V) Nominal Input Voltage (V)
- Max. Input Current per MPPT (A)
- Max. Short Circuit Current per MPPT (A)
- Number of MPP Trackers
- Number of Strings per MPPT

Output

- Nominal Output Power (kW)
- Nominal Output Apparent Power (kVA)
- Max. AC Active Power (kW)
- Max. AC Apparent Power (kVA)
- Nominal Output Voltage (V) Output Voltage Range (V)
- Nominal AC Grid Frequency (Hz)
- AC Grid Frequency Range (Hz)
- Max. Output Current (A)
- Output Power Factor
- Max. Total Harmonic Distortion

Efficiency

- Max. Efficiency
- European Efficiency

Protection

PV String Current Monitoring	J
PV Insulation Resistance De	tection
Residual Current Monitoring	
PV Reverse Polarity Protecti	on
Anti-islanding Protection	
AC Overcurrent Protection	
AC Short Circuit Protection	
AC Overvoltage Protection	
DC Switch	
DC Surge Protection	
AC Surge Protection	
AFCI	
Emergency Power Off ^{*5}	
Remote Shutdown ^{*6}	
PID Recovery	
General Data	
Operating Temperature Ran	ge (°C)
Relative Humidity	
Max. Operating Altitude (m)	

- Cooling Method User Interface Communication
- Communication Protocols
- Weight (kg)
- Dimension ($W \times H \times D$ mm)
- Topology
- Self-consumption at Night (W)
- Ingress Protection Rating DC Connector
- AC Connector
- *1: For Brazil and Chile Max. AC Active Power (kW): GW50K-MT is 50; GW60K-MT is 60. *2: For Brazil and Chile Max. AC Apparent Power (kVA): GW50K-MT is 50; GW60K-MT is 60.

*3: For Brazil and Thailand (PEA) Nominal Output Voltage (V): 220 / 380, 3L / N / PE or 3L / PE. *4: For Australia DC Switch is PV2.

GOODWE

GW50KS-MT

GW60KS-MT

1100	
200 ~ 950)
180	
600	
30	
37.5	
5	6
2	
50	60
50	60
55 ^{°1}	66 ^{*1}
55 ^{°2}	66 ^{*2}
230 / 400 ^{*3} , 3L / N / F	
320 ~ 460)
50 / 60	
45 ~ 55 / 55	
80.0	96.0
~1 (Adjustable from 0.8 lead	ding to 0.8 lagging)
<3%	
98.6%	
98.1%	
	-
Integrated	
Integrated Integrated	
Type II (Type I + II	
Type II	Optional
Optional	
Optional	
Optional	
Optional	
-30 ~ +60)
0 ~ 100%	
3000	
Smart Fan Co	oling
LED, LCD (Optional),	
RS485, WiFi or 4G or P	LC (Optional) ^{*7}
Modbus-RTU (SunSpe	
55	
520 × 660 ×	220
Non-isolate	ed
<1	
IP65	
MC4 (4 ~ 6n	nm²)
OT / DT Terminal (M	ax. 50mm²)
*5: For Indian Emerg	ency Power Off: Optional.

*6: For Europe Remote Shutdown: integrated

*: For Baraji Communication is R\$485, WiFi, USB, PLC (Optional).
 *: Please visit GoodWe website for the latest certificates.

LVSMT Series

12-35kW I Three Phase I Up to 6 MPPTs

GoodWe's LVSMT Series three-phase inverter is designed with low voltage power input, and is an ideal choice for commercial installations. Developed as an efficient response to South American market needs for low-voltage inverters above 10kW, this series is applicable to special grid voltage ranges within the region. With the GoodWe LVSMT Series inverter, the system configuration can be simplified by avoiding the installation of an expensive transformer, greatly reducing the initial investment costs of the system.

Smart Control & Monitoring

· String level monitoring · Power line communication

Superb Safety & Reliability · Optional AFCI · IP65 ingress protection

High Power Generation for High Returns · Max. Efficiency up to 98.8% · 130% DC input oversizing

Friendly & Thoughtful Design

200V-650V wide MPPT voltage range · Fuse-free design

LVSMT Series

Technical Data	GW12KLV-MT	GW15KLV-MT	GW20KLV-MT	GW30KLS-MT	GW35KLS
Input					
Max. Input Voltage (V)			800		
MPPT Operating Voltage Range (V)			200 ~ 650		
Start-up Voltage (V)			180		
Nominal Input Voltage (V)			370		
Max. Input Current per MPPT (A)			30		
Max. Short Circuit Current per MPPT (A)			37.5		
Number of MPP Trackers	3	3	3	5	6
Number of Strings per MPPT			2		
Output					
Nominal Output Power (kW)	12.0	15.0	20.7	30.0	35.0
Nominal Output Apparent Power (kVA)	12.0	15.0	20.7	30.0	35.0
	11.3@208V,	14.4@208V,	19.6@208V,		
Max. AC Active Power (kW)	12.0@220V,	15.0@220V,	20.7@220V,	30.0	35.0
	13.1@240V	16.6@240V	22.6@240V		
Max. AC Apparent Power (kVA)	13.1	16.6	22.6	30.0	35.0
Nominal Output Voltage (V)			220, 3L / N / PE or 3L / P		
Output Voltage Range (V)	150 ~ 300	150 ~ 300	150 ~ 300	176 ~ 242	176 ~ 24
Nominal AC Grid Frequency (Hz)			50 / 60		
AC Grid Frequency Range (Hz)			47.5 ~ 51.5 / 57.0 ~ 61.		
Max. Output Current (A)	31.5	40.0	54.5	80.0	96.0
Power Factor		~1 (Adjust	table from 0.8 leading to	0.8 lagging)	
Max. Total Harmonic Distortion			<3%		
Efficiency					
Max. Efficiency	98.7%	98.7%	98.8%	98.0%	98.0%
European Efficiency	98.4%	98.5%	98.5%	97.7%	97.7%
Protection					
PV String Current Monitoring			Integrated		
PV Insulation Resistance Detection			Integrated		
Residual Current Monitoring			Integrated		
PV Reverse Polarity Protection			Integrated	-	
Anti-islanding Protection			Integrated		
AC Overcurrent Protection			Integrated		
AC Short Circuit Protection			Integrated		
AC Overvoltage Protection			Integrated		
DC Switch			Integrated		·
DC Surge Protection	Т	ype III (Type II Optior	-	Type II (Type	+ II Optional)
AC Surge Protection		ype III (Type II Option			e II
AFCI		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Optional		
Remote Shutdown			Optional		
PID Recovery			Optional		
General Data					
Operating Temperature Range (°C)			-30 ~ +60		
Relative Humidity			0 ~ 100%		
Max. Operating Altitude (m)			3000		
Cooling Method			Smart Fan Cooling		
User Interface		I FD	, LCD (Optional), WLAN	+ APP	
Communication			5, WiFi or 4G or PLC (Op		
Communication Protocols			Ibus-RTU (SunSpec Com	,	
Weight (kg)	40.0	40.0	40.0	55.0	55.0
Dimension ($W \times H \times D$ mm)	.5.0	480 × 590 × 200	.0.0		50 × 220
Noise Emission (dB)	<60	<60	<60	<65	<65
Topology			Non-isolated		~~~~
Self-consumption at Night (W)			<1		
Ingress Protection Rating					
DC Connector			MC4 (4 ~ 6mm ²)		
			WO4 (4 ~ 011111")		

*1: For Brazil Communication is RS485, WiFi, USB, PLC (Optional). *: Please visit GoodWe website for the latest certificates.

MT Series

Technical Data	GW50KN -MT	GW60KN -MT	GW50KBF -MT	GW60KBF -MT	GW75KBF -MT	GW80KBF -MT	GW70KHV -MT	GW80KHV -MT	GW75K -MT	GW -N
Input										
Max. Input Voltage (V)					11	00				
MPPT Operating Voltage Range (V)						- 1000				
Start-up Voltage (V) Nominal Input Voltage (V)	620	620	620	620	750	00 800	750	800	600	62
Max. Input Current per MPPT (A)	33 / 33 /	33	30	44	44	39	33	44	44	4
Max. Short Circuit Current per	22 / 22	41.5	37.5	55.0	55.0	54.8	41.5	55.0	55.0	55
MPPT (A) Number of MPP Trackers	27.5 / 27.5	41.5	57.5	55.0		4	41.5	33.0	35.0	00
Number of Strings per MPPT	3/3/2/2	3	2	3	3	3	3	4	4 (Standard), 3 (Optional, Support bifacial module)	(Stan Sup bifa mod (Opti
Output										
Nominal Output Power (W)	50000	60000	50000	60000	75000	80000	70000	80000	75000	800
Nominal Output Apparent Power (VA)	50000	60000	50000	60000	75000	80000	70000	80000	75000	800
Max. AC Active Power (W)	55000; 57500 @415V*1	66000; 69000 @415V*1	55000; 57500 @415V*1	66000; 69000 @415V*1	82500*1	88000*1	77000*1	88000*1	75000	880
Max. AC Apparent Power (VA)	55000; 57500 @415V* ²	66000; 69000 @415V* ²	@415V*2	@415V*2	82500* ²	88000*2	77000*2	88000*2	75000	880
Nominal Output Voltage (V)		400, 3L / N /	PE or 3L / PI	E	, .	, ,	500, 3L / PE	540, 3L / PE	400, 3L / N /	PE or 3
Nominal AC Grid Frequency (Hz) Max. Output Current (A)	80.0	96.0	80.0	96.0	95.3	/ 60 94.1	89.0	94.1	133.0	13
Power Factor	00.0	90.0	00.0			34.1 B lagging to (54.1	155.0	10
Max. Total Harmonic Distortion				. (j		3%				
Efficiency										
Max. Efficiency	98.7%	98.8%	98.8%	98.8%	99.0%	99.0%	99.0%	99.0%	98.8%	98.
European Efficiency	98.3%	98.5%	98.3%	98.3%	98.4%	98.4%	98.4%	98.4%	98.3%	98.
Protection										
PV String Current Monitoring					Integ	rated				
PV Insulation Resistance Detection					0	rated				
Residual Current Monitoring						rated		_	_	
PV Reverse Polarity Protection						rated				
Anti-islanding Protection AC Overcurrent Protection					0	Irated				
AC Overcurrent Protection						rated rated				
AC Overvoltage Protection					0	rated				
DC Switch						rated				
DC Surge Protection						be II				
AC Surge Protection						be II				
AFCI RID Receivery						ional				
PID Recovery					Opt	ional				
General Data										
Operating Temperature Range (°C) Relative Humidity						~ +60 100%				
Max. Operating Altitude (m)	4000	4000	4000	4000	4000	4000	4000	4000	≤4000	≤40
Cooling Method				Smart Fai					1	cooling
User Interface	LED, LCD	(Optional), \	WiFi + APP	LE	ED, WiFi + Al	PP	LED, LCD (Optional), WiFi + APP		ED, WiFi + A	PP
Communication			R	S485, WiFi or	PLC (Optior	nal)			RS485, \ (Opt	NiFi, Pl ional)
Weight (kg)	59.0	64.0	60.0	65.0	65.0	65.0	60.0	65.0	70.0	70
Dimension (W \times H \times D mm)	58	36 × 788 × 2	64	58	36 × 788 × 2	67	586 × 788 × 264	58	86 × 788 × 2	67
Topology				1		solated	1			
Self-consumption at Night (W)						:1				-
Ingress Protection Rating					IP	65				h ##
DC Connector	MC4 (4	~ 6mm²)	-	-	-	-	-	-	-	MC (4 ~ 6

Max. Input Voltage (V)					11	100				
MPPT Operating Voltage Range (V)						- 1000				
Start-up Voltage (V)						00				
Nominal Input Voltage (V)	620	620	620	620	750	800	750	800	600	
Max. Input Current per MPPT (A)	33 / 33 / 22 / 22	33	30	44	44	39	33	44	44	
Max. Short Circuit Current per MPPT (A)	41.5 / 41.5 / 27.5 / 27.5	41.5	37.5	55.0	55.0	54.8	41.5	55.0	55.0	
Number of MPP Trackers						4				
Number of Strings per MPPT	3/3/2/2	3	2	3	3	3	3	4	4 (Standard), 3 (Optional, Support bifacial module)	
Output										
Nominal Output Power (W)	50000	60000	50000	60000	75000	80000	70000	80000	75000	8
Nominal Output Apparent Power (VA)	50000	60000	50000	60000	75000	80000	70000	80000	75000	8
Max. AC Active Power (W)	55000; 57500 @415V*1	66000; 69000 @415V*1	55000; 57500 @415V*1	66000; 69000 @415V*1	82500* ¹	88000*1	77000*1	88000*1	75000	88
Max. AC Apparent Power (VA)	55000; 57500 @415V* ²	66000; 69000 @415V* ²	55000; 57500 @415V* ²	66000; 69000 @415V* ²	82500*2	88000*2	77000*2	88000*2	75000	88
Nominal Output Voltage (V)		400, 3L / N /	PE or 3L / PE				500, 3L / PE	540, 3L / PE	E 400, 3L / N /	PE o
Nominal AC Grid Frequency (Hz)						/ 60				
Max. Output Current (A)	80.0	96.0	80.0	96.0	95.3	94.1	89.0	94.1	133.0	-
Power Factor Max. Total Harmonic Distortion				~1 (adjusta		3 lagging to 3%	u.8 leading)			
					<	J /o		_		
Efficiency										
Max. Efficiency	98.7%	98.8%	98.8%	98.8%	99.0%	99.0%	99.0%	99.0%	98.8%	ç
European Efficiency	98.3%	98.5%	98.3%	98.3%	98.4%	98.4%	98.4%	98.4%	98.3%	ç
Protection										
PV String Current Monitoring					Inter	grated				
PV Insulation Resistance Detection					0	grated				
Residual Current Monitoring					0	grated				
PV Reverse Polarity Protection					Integ	grated				
Anti-islanding Protection					Integ	grated				
AC Overcurrent Protection					0	grated				
AC Short Circuit Protection					0	grated				
AC Overvoltage Protection						grated				
DC Switch					×	grated				
DC Surge Protection						be II				
AC Surge Protection					21	be II				
AFCI PID Recovery						ional ional				
General Data										
Operating Temperature Range (°C)					-30 -	~ +60				
Relative Humidity					0~	100%				
Max. Operating Altitude (m)	4000	4000	4000	4000	4000	4000	4000	4000	≤4000	<u>≤</u>
Cooling Method				Smart Fai	n Cooling				Fan C	Coolir
User Interface	LED, LCD	(Optional), \	NiFi + APP	LE	ED, WiFi + A	PP	LED, LCD (Optional), WiFi + APP	L	ED, WiFi + A	'PP
Communication			RS	485, WiFi or	PLC (Optior	nal)			RS485, \ (Opt	WiFi, tional
Weight (kg)	59.0	64.0	60.0	65.0	65.0	65.0	60.0	65.0	70.0	
roigin (ng)	59.0 64.0 60.0 65.0 65.0 60.0 65.0 70.0 70.0 586 × 788 × 264 586 × 788 × 267 586 × 788 × 264 586 × 788 × 267									
Dimension (W \times H \times D mm)	58	36 × 788 × 2	04							
Dimension (W \times H \times D mm)	58	36 × 788 × 2	04			solated				
Dimension (W × H × D mm) Topology	58	36 × 788 × 2	04		Non-is	solated				
Dimension (W \times H \times D mm)	58	36 × 788 × 2	04		Non-is	solated <1 265				

*1: For Chile Max. AC Active Power (W): GW50KN-MT is 50000; GW60KN-MT is 60000; GW50KBF-MT is 50000; GW60KBF-MT is 60000; GW75KBF-MT is 75000;

GW80KBF-MT is 80000; GW70KHV-MT is 70000; GW80KHV-MT is 80000; GW80K-MT is 80000. *2: For Chile Max. AC Apparent Power (VA): GW50KN-MT is 50000; GW60KN-MT is 60000; GW50KBF-MT is 50000; GW60KBF-MT is 60000; GW75KBF-MT is 75000; GW80KHV-MT is 75000; GW80KHV-MT is 80000.

*: Please visit GoodWe website for the latest certificates.

MT Series 50-80kW | Three Phase | 4 MPPTs

The second generation of GoodWe MT Series inverter is suited for medium and large scale commercial rooftops and ground-mounted solar PV systems where maximum versatility and profitability are important. With its compact design and power boost function, the Goodwe MT series of the new generation can provide a 150% continuous maximum AC output power overload, offering a faster return on investment. The start-up voltage is 200V, much lower than other products, which makes the inverter start up earlier, therefore generating more power over time.

Up to 115% AC output overloading

Up to 99% Max. Efficiency

Power line communication

Full-load running at 50°C

6

String level monitoring

-9/9

LVMT Series

Technical Data	GW30KLV-MT
Input	
Max. Input Voltage (V)	
 MPPT Operating Voltage Range (V)	
Start-up Voltage (V)	
Nominal Input Voltage (V)	
Max. Input Current per MPPT (A)	33 / 33 / 22 / 22
Max. Short Circuit Current per MPPT (A)	41.5 / 41.5 / 27.5 / 27.
Number of MPP Trackers	
Number of Strings per MPPT	3/3/2/2
Output	
 Nominal Output Power (W)	30000
Nominal Output Apparent Power (VA)	30000
Max. AC Active Power (W)	28800@208V; 30000@220V; 33000@240V;
Max. AC Apparent Power (VA)	33000
Nominal Output Voltage (V)	
Nominal AC Grid Frequency (Hz)	
Max. Output Current (A)	80.0
Power Factor	
Max. Total Harmonic Distortion	
Efficiency	
Max. Efficiency	98.7%
European Efficiency	98.3%
Protection	
PV String Current Monitoring	
PV Insulation Resistance Detection	
Residual Current Monitoring	
PV Reverse Polarity Protection	
Anti-islanding Protection	
AC Overcurrent Protection	
AC Short Circuit Protection	
AC Overvoltage Protection	
DC Switch	
DC Surge Protection	
AC Surge Protection	
 AFCI	
PID Recovery	
General Data	
 Operating Temperature Range (°C)	
 Relative Humidity	
 Max. Operating Altitude (m) Cooling Method	
 User Interface	LED, LCD (Optional), WiFi
 Communication	RS485, WiFi (Optional)
 Weight (kg)	59.0
 Dimension (W \times H \times D mm)	586 × 788 × 264
 Topology	000 x 700 x 204
 Self-consumption at Night (W)	
 Ingress Protection Rating	

*: Please visit GoodWe website for the latest certificates.

LVMT Series 30-50kW | Three Phase | 4 MPPTs

Developed as an efficient response to South American market needs for low-voltage inverters, GoodWe's LVMT series inverter is suitable for medium and largescale commercial rooftops or ground-mounted solar PV systems where maximum versatility and profitability are important. With its compact design and power boost function, GoodWe's LVMT series can provide an extremely high efficiency of 98.8%, thus offering a faster return on

investment.

Up to 110% AC output overloading

Full-load running at 50°C

Up to 98.8% Max. Efficiency

(A)

-9(9)

Power line communication

GOODWE

GW50KLV-MT

GW35KLV-MT

44
55
4
50000
50000
47300@208V;
50000@220V; 55000@240V;
55000
55000
122.0
133.0
98.7%
98.3%
LED, WiFi + APP
S485, WiFi, PLC (Optional)
70.0
586 × 788 × 267

HT Series

Technical Data	GW73KLV-HT	GW75K-HT	GW80K-HT	GW100K-HT	GW110K-HT	GW120
Input						
Max. Input Voltage (V)	800	1100	1100	1100	1100	1100
MPPT Operating Voltage Range (V)	180 ~ 650	180 ~ 1000	180 ~ 1000	180 ~ 1000	180 ~ 1000	180 ~ 1
Start-up Voltage (V)				00		
Nominal Input Voltage (V)	370	600	600	600	600	600
Max. Input Current per MPPT (A)				30		
Max. Short Circuit Current per MPPT (A)				15		
Number of MPP Trackers	12	10	10	10	12	12
Number of Strings per MPPT	12	10		2	12	
Output						
	70	75		100*1	110	100
Nominal Output Power (kW)	73	75	80	100*1	110	120
Nominal Output Apparent Power (kVA)	73	75	80	1001	110	120
Max. AC Active Power (kW)	69@208V; 73@220V; 75@240V	75	88	110 ^{*1}	121 ^{*1}	132
Max. AC Apparent Power (kVA)	75	75	88	110 ^{*1}	121*1	132
Nominal Output Voltage (V)	220V, 3L / N / PE	380V / 400V. 3I /	N / PE or 3L / PE ^{*2}	400	/, 3L / N / PE or 3L .	/ PE ^{*2}
	or 3L / PE			1		
Output Voltage Range (V)	187 ~ 242	320 ~ 440	320 ~ 440	320 ~ 440	320 ~ 440	320 ~ 4
Nominal AC Grid Frequency (Hz)				/ 60		
AC Grid Frequency Range (Hz)	400.0	405.0		/ 55 ~ 65	47F F	101
Max. Output Current (A)	192.0	125.3	134.0	167.0	175.5	191.
Power Factor Max. Total Harmonic Distortion		~1 (,	8 leading to 0.8 lage 3%	yirig)	
				3 %		
Efficiency						
Max. Efficiency	98.4%	98.6%	98.6%	98.6%	98.6%	98.69
European Efficiency	98.1%	98.3%	98.3%	98.3%	98.3%	98.3
Protection						
PV String Current Monitoring			Integ	grated		
PV Insulation Resistance Detection			Integ	grated		
Residual Current Monitoring			Integ	grated		
PV Reverse Polarity Protection			Integ	grated		
Anti-islanding Protection			Integ	grated		
AC Overcurrent Protection			Integ	grated		
AC Short Circuit Protection			Integ	grated		
AC Overvoltage Protection			Integ	grated		
DC Switch			Integ	grated		
DC Surge Protection				pe II		
AC Surge Protection			Тур	oe II		
AFCI				ional		
Remote Shutdown			Opt	ional		
PID Recovery			Opt	ional		
General Data						
Operating Temperature Range (°C)			-30 -	~ +60		
Relative Humidity				100%		
Max. Operating Altitude (m)				00 derating)		
Cooling Method				an Cooling		
User Interface				nal), WLAN + APP		
Communication				r 4G (Optional)		
Communication Protocols			Modbus-RTU (Su	inSpec Compliant)		
Weight (kg)	98.5	93.5	93.5	93.5	98.5	98.5
Dimension (W \times H \times D mm)				678 × 343		
Topology				solated		
Self-consumption at Night (W)				<2		
Ingress Protection Rating				266		
DC Connector			MC4 (4	~ 6mm²)		

*2: For Brazil, Nominal Output Voltage (V): 380, 3L / N / PE or 3L / PE.

*: Please visit GoodWe website for the latest certificates

*: All pictures shown are for reference only. Actual appearance may vary.

HT Series 1100Vdc

73-120kW LUp to 12 MPPTs I Three Phase

The HT 1100 Vdc Series 73-120kW is GoodWe's new string inverter for C&I and small utility projects to poost your power and profit. Generate your solar power and make use of it with this centerpiece of the clean energy system. The HT Series seamlessly incorporates its technical strengths designed to achieve higher savings in the installation, enhance productivity with increased energy yields, realize high power density and diversify available monitoring options. It takes safety to the top possible level in accordance with the strictest industry standards and runs efficiently even under the harshest environmental conditions. This unrivalled set of features was conceived to ensure the lowest levelized cost of electricity (LCOE) to offer this ideal choice for commercial and industrial PV systems.

Smart Control & Monitoring Optimal Generation for Higher Return $\{ \bigcirc \}$ String level monitoring Full load running at 45°C Up to 12 MPPTs · Dynamic power export limit

Superb Safety & Reliability IP66 and C5 protection · Type II SPD on both DC and AC sides

Sala aller

Friendly & Thoughtful Design

Easy and quick configuration via Bluetooth Power line communication

GT Series

100-125kW | Three Phase | 8/10 MPPTs

The GT Series string inverter is an ideal choice for commercial and industrial (C&I) applications to enhance productivity with increased energy yields and realize high power density. Multiple MPPTs and high input current of 21A per DC string increase the overall yield with high-power PV modules. The optional PID (Potential Induced Degradation) recovery function is also supported for better module performance. Safety is always the first priority. Both the DC and AC sides are equipped with Type II surge protection to protect the inverter from lightning, providing upgraded safety and reliability for the PV system. With an unrivaled set of features, GT Series inverters were conceived to deliver increased return on investment (ROI) for C&I PV projects.

Optimal Generation for Higher Return

COMING SOON

- · Max. 21A DC input current per string · 150% DC input oversizing & 110% AC output overloading

 $\left(\circ \right)$

Superb Safety & Reliability

- IP66 and optional C5 protection¹ Type II SPD on AC & DC sides
- · Optional AFCI protection¹

Smart Control & Monitoring

- Smart I-V curve scan and diagnosis¹ · String level monitoring

Friendly & Thoughtful Design

· Fuse-free design Power line communication (PLC) optional¹

GT Series

Technical Data	GW100K-GT	GW110K-GT	GW125K-GT
Input			
Max. Input Voltage (V)		1100	
MPPT Operating Voltage Range (V)		180 ~ 1000	
Start-up Voltage (V)		200	
Nominal Input Voltage (V)		600	
Max. Input Current per MPPT (A)		42	
Max. Short Circuit Current per MPPT (A)		52.5	
Number of MPP Trackers	8	10	10
	0	2	10
Number of Strings per MPPT		2	
Output			
Nominal Output Power (kW)	100*1	110	125
Nominal Output Apparent Power (kVA)	100*1	110	125
Max. AC Active Power (kW) ^{*3}	110.0 ^{*1}	121.0	137.5 ^{*2}
Max. AC Apparent Power (kVA) ^{*3}	110.0 ^{°1}	121.0	137.5 ^{*2}
Nominal Output Voltage (V)	2	20 / 380, 230 / 400, 3L / N / PE or 3L /	PE
Output Voltage Range (V)		304 ~ 460	
Nominal AC Grid Frequency (Hz)		50 / 60	
AC Grid Frequency Range (Hz)		45 ~ 55 / 55 ~ 65	
Max. Output Current (A)	167.1	183.4	199.4
Power Factor		(Adjustable from 0.8 leading to 0.8 lag	
Max. Total Harmonic Distortion		<3%	9
Efficiency			
•	00.00/	00.0%	99.0%
Max. Efficiency	98.8%	98.8%	
European Efficiency	98.4%	98.4%	98.5%
Protection			
PV String Current Monitoring		Integrated	
PV Insulation Resistance Detection		Integrated	
Residual Current Monitoring		Integrated	
PV Reverse Polarity Protection		Integrated	
Anti-islanding Protection		Integrated	
AC Overcurrent Protection		Integrated	
AC Short Circuit Protection		Integrated	
AC Overvoltage Protection		Integrated	
DC Switch			
DC Surge Protection AC Surge Protection		Type II (Type I + II Optional)	
AC Surge Frotection		Type II Optional	
Emergency Power Off		Optional	
Rapid Shutdown		Optional	
Remote Shutdown		Optional	
PID Recovery		Optional	
Reactive Power Compensation at Night		Optional	
Power Supply at Night		Optional	
-V Curve Scan		Optional	
-V Curve Diagnosis		Optional	
General Data			
Operating Temperature Range (°C)		-30 ~ +60	
Relative Humidity		0 ~ 100%	
Max. Operating Altitude (m)		4000	
Cooling Method		Smart Fan Cooling	
User Interface		LED, LCD (Optional), WLAN + APP	
Communication		RS485, WiFi or 4G or PLC (Optional)	
Communication Protocols		Modbus-RTU (SunSpec Compliant)	
Weight (kg)	85	88	88
Dimension (W \times H \times D mm)		$930 \times 650 \times 300$	
Тороlogy		Non-isolated	
Self-consumption at Night (W)		<2	
ngress Protection Rating		IP66	
DC Connector		MC4 (4 ~ 6mm ²)	
AC Connector		OT / DT terminal (Max. 240mm ²)	

- *2: For VDE4105 Max. AC Active Power (kW) and Max. AC Apparent Power (kVA): GW125K-GT is 134.9. *3: For Chile and Brazil Max. AC Active Power (kW) and Max. AC Apparent Power (kVA): GW100K-GT is 100; GW110K-GT is 110; GW125K-GT is 125. *: Please visit GoodWe website for the latest certificates.
- *: All pictures shown are for reference only. Actual appearance may vary. *: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

COMMERCIAL & INDUSTRIAL ENERGY STORAGE PRODUCTS

Inverter

- ET Series
- ETC Series
- BTC Series

Battery

• Lynx C 101kWh (indoor)

All-in-one System

- ESA 30kW/60kWh
- ESA 50kW/100kWh

ET Series

40/50kW I Three Phase I 3/4 MPPTs Hybrid Inverter (HV)

GoodWe's ET Series inverters, available in 40kW and 50kW capacities, are designed for commercial and industrial PV installations. These adaptable inverters seamlessly integrate into both on-grid and off-grid applications, facilitating parallel connections in either scenario. When paired with the Static Transfer Switch (STS) Box from GoodWe, the inverter not only ensures dependable UPS-level switching to backup mode but also interacts with diesel generators to efficiently replenish batteries. Moreover, the ET Series is compatible with diverse battery capacities and brands, including the GoodWe Lynx C, offering a comprehensive energy storage solution.

Friendly & Thoughtful Design

Elegant and compact design

Plug & Play installations

Smart Control & Monitoring

· <10ms UPS-level switching · 110% unbalanced output

Superb Safety & Reliability

Optional Type I+II SPD on DC side¹ · IP66 protection for ourdoor installation safety

COMING

SOON

· AFCI optional¹

Flexible & Adaptable Applications

- Compatible with 182/210mm modules
- · Up to 150% DC input oversizing
- · 4 MPPTs, Max. efficiency up to 98.1%

ET Series

Technical Data Battery Input Data Battery Type Nominal Battery Voltage (V) Battery Voltage Range (V) Start-up Voltage (V) Number of Battery Input Max. Continuous Charging Current (A) Max. Continuous Discharging Current (A Max. Charging Power (W) Max. Discharging Power (W) **PV String Input Data** Max. Input Power (W) Max. Input Voltage (V) MPPT Operating Voltage Range (V) Start-up Voltage (V) Nominal Input Voltage (V Max. Input Current per MPPT (A Max. Short Circuit Current per MPPT (A Number of MPP Trackers Number of Strings per MPPT AC Output Data (On-grid) Nominal Output Power (W) Nominal Apparent Power Output to Utility Grid (VA) Max. Apparent Power Output to Utility Grid (VA) Max. Apparent Power from Utility Grid (VA) Nominal Output Voltage (V) Output Voltage Range (V) Nominal AC Grid Frequency (Hz) AC Grid Frequency Range (Hz) Max. AC Current Output to Utility Grid (A) Max. AC Current From Utility Grid (A) Power Factor Max. Total Harmonic Distortion AC Output Data (Back-up)¹¹ Back-up Nominal Apparent Power (VA) Max. Output Apparent Power (VA) Max. Output Current (A) Nominal Output Voltage (V) Nominal Output Frequency (Hz) Output THDv (@Linear Load) Efficiency Max. Efficiency European Efficiency Max. Battery to AC Efficiency MPPT Efficiency Protection PV String Current Monitoring PV Insulation Resistance Det Residual Current Monitoring PV Reverse Polarity Protection Battery Reverse Polarity Protect Anti-islanding Protection AC Overcurrent Protection AC Short Circuit Protection AC Overvoltage Protection Switch DC Surge Protection AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C Relative Humidity Max. Operating Altitude (m) Coolina Method User Interface Communication with BMS Communication with Meter Communication with Porta Weight (kg) Dimension ($W \times H \times D$ mm) Topology Self-consumption at Night (W) Ingress Protection Rating Mounting Method *1. Backup function can be only realized with STS Box (Static Transfer Switch Box). *: Please visit GoodWe website for the latest certificates

1: Optional functions or devices are purchased separately.

GOODWE

GW40K-ET-10 GW50K-ET-10 Li-Ion 200 ~ 800 100 100 44000 55000 44000 55000 60000 75000 1000 165 ~ 850 160 620 42 / 32 / 42 42 / 32 / 42 / 32 55 / 42 / 58 55 / 42 / 55 / 42 40000 50000 40000 50000 44000 55000 44000 55000 380 / 400, 3L / N / F 176~276 50 / 60 $45 \sim 65$ 60.6 75.8 60.6 ~1 (Adjustable from 0.8 leading to 0.8 lagging) <3% 40000 44000 (48000 at 60sec, 60000 at 10sec) 55000 (60000 at 60sec, 75000 at 10se 66.7 380 / 400, 3L / N / PI 50/60 < 3% 98.1% 97.5% 97.7% 99.0% Integrated Integrate Integrated Integrated Integrated Integrated Integrated Integrated Integrated Integrated Type II (Type I + II Option Type II Optiona Optional Integrated -35 ~ +60 0~95% 4000 Smart Fan Coolin LED, WLAN + AP CAN RS485 WIFI + LAN / 4G (Optional 520 × 660 × 260 Non-isolated < 15 IP66 Wall Mounted

*: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

ETC Series

50/100kW | Three phase 1/2 MPPT I Hybrid inverter (HV)

The GoodWe ETC Series is a versatile three-phase hybrid inverter designed to accommodate a wide battery voltage range, spanning from 200 to 865V. Its user-friendly Plug & Play modularized design consists of five main modules: 2 MPPT, DC/DC, DC/AC, STS, and EMS. This design approach offers increased flexibility and simplifies the installation process.

Featuring UPS-level switching with an impressive response time of less than 10ms, the GoodWe ETC Series ensures a seamless and uninterrupted power supply for critical loads. Additionally, it incorporates a Type II SPD for enhanced system safety. The combination of the ETC hybrid inverters and the GoodWe battery system Lynx C (ranging from 101kWh to 156kWh) creates a highly efficient energy storage solution. This solution is an excellent choice for commercial and industrial applications, whether the goal is to increase self-consumption, implement peak load shaving, or establish a robust backup power system.

Smart Control & Monitoring <10ms UPS-level switching · Multi-protocol communication

Superb Safety & Reliability

Built-in Type II SPD (Type I + II offered as optional configuration)

Integrated remote shutdown

Friendly & Thoughtful Design Modularized design · Plug & Play

Flexible & Adaptable Applications · Peak load shaving

100% unbalanced output

ETC Series

Technical Data	GW50K07-ETC	GW50K06-ETC [™]	GW100K07-ETC	
Battery Input Data				
Battery Type Nominal Battery Voltage (V)			-lon / 576 0 / 652 8	
Battery Voltage Range (V)	422.4 / 499.2 / 576.0 / 652.8 200 ~ 865			
Start-up Voltage (V)			200	
Number of Battery Input	1	1	2	2
Max. Continuous Charging Current (A)	100	100	100 / 100	100 / 100 100 / 100
Max. Continuous Discharging Current (A) Max. Charging Power (kW)	50	50	100 / 100	100 / 100
Max. Discharging Power (kW)	55	55	110	110
PV String Input Data				
Max. Input Power (kW)	65	65	130	130
Max. Input Voltage (V)	00		000	100
MPPT Operating Voltage Range (V)			~ 960	
Start-up Voltage (V)			250	
Nominal Input Voltage (V) Max. Input Current per MPPT (A)			00	
Max. Short Circuit Current per MPPT (A)			25	
Number of MPP Trackers	1	1	2	2
AC Output Data (On-grid)				
Nominal Output Power (kW)	50	50	100	100
Nominal Apparent Power Output to Utility Grid (kVA)	50	50	100	100
Max. Apparent Power Output to Utility Grid (kVA)	55	55	110	110
Max. Apparent Power from Utility Grid (kVA) Nominal Output Voltage (V)	55	55	110 _ / N / PE	110
Output Voltage Range (V)			18 ~ 497 (Germany)	
Nominal AC Grid Frequency (Hz)			/ 60	
AC Grid Frequency Range (Hz)			5 ~ 51.5 (Germany)	
Max. AC Current Output to Utility Grid (A) Max. AC Current from Utility Grid (A)	79.8 79.8	79.8 79.8	159.5 159.5	159.5 159.5
Power Factor	19.0		8 leading to 0.8 lagging)	109.0
Max. Total Harmonic Distortion			3%	
AC Output Data (Back-up)				
Back-up Nominal Apparent Power (kVA)	50	-	100	-
Max. Output Apparent Power without Grid (kVA)	55	-	110	-
Max. Output Apparent Power with Grid (kVA)	55	-	110	-
Max. Output Current (A)	79.8 400	-	159.5	-
Nominal Output Voltage (V) Nominal Output Frequency (Hz)	50 / 60	-	400 50 / 60	-
Output THDv (@Linear Load)	<3%	-	<3%	-
Efficiency				
Max. Efficiency		97	.6%	
European Efficiency			.3%	
Max. Battery to AC Efficiency			.2%	
MPPT Efficiency		99	.9%	
Protection				
PV Insulation Resistance Detection			grated	
Residual Current Monitoring PV Reverse Polarity Protection			grated grated	
Battery Reverse Polarity Protection			grated	
Anti-islanding Protection			grated	
AC Overcurrent Protection			grated	
AC Short Circuit Protection AC Overvoltage Protection			grated	
DC Switch			grated grated	
AC Switch			grated	
DC Surge Protection			I + II Optional)	
AC Surge Protection			I + II Optional)	
Emergency Power Off Remote Shutdown			grated grated	
General Data			y*	
Operating Temperature Range (°C)		20	45°C derating)	
Relative Humidity			n-condensing)	
Max. Operating Altitude (m)		40	000	
Cooling Method			an Cooling	
User Interface			WLAN + APP	
Communication with BMS Communication with Meter			5, CAN	
Communication with Portal			5, LAN	
Weight (kg)	<200	<200	<260	<260
Dimension (W × H × D mm)			360 × 750	
Noise Emission (dB)			:68 solated	
Topology Ingress Protection Rating			20	
		1		

1: The models with the "06" suffix do not include an automatic switching module, specifically designed for 'grid-tied' applications. *: Please visit GoodWe website for the latest certificates

GOODWE

BTC Series

50/100kW I Three phase AC-coupled retrofit inverter (HV)

The GoodWe BTC Series is an AC-coupled retrofit inverter designed for three-phase systems in distributed PV setups. It seamlessly integrates with high-voltage batteries, offering a voltage range of 200 to 865V. Featuring a straightforward Plug & Play modular design, the GoodWe BTC Series comprises four sections: DC/DC, DC/AC, STS, and EMS modules. This design facilitates easy installation and maintenance. Featuring UPS-level switching with an impressive response

Featuring UPS-level switching with an impressive response time of less than 10ms, the GoodWe BTC Series ensures a seamless and uninterrupted power supply for critical loads. When combined with the GoodWe battery system Lynx C, which ranges from 101kWh to 156kWh, a highly efficient energy storage solution is formed. This combination is ideal for maximizing the utilization of renewable energy in distributed PV systems.

Smart Control & Monitoring · <10ms UPS-level switching

Multi-protocol communication

Superb Safety & Reliability • Built-in Type II SPD on AC side • Integrated remote shutdown

Friendly & Thoughtful Design
• Modularized design
• Plug & Play

Flexible & Adaptable Applications

Peak load shaving
 100% unbalanced output

BTC Series

Technical Data	GW50K07-BTC
Battery Input Data	
Battery Type	
Nominal Battery Voltage (V)	
Battery Voltage Range (V)	
Start-up Voltage (V) Number of Battery Input	1
Max. Continuous Charging Current (A)	100
Max. Continuous Discharging Current (A)	100
Max. Charging Power (kW)	50
Max. Discharging Power (kW)	55
AC Output Data (On-grid)	
Nominal Output Power (kW)	50
Nominal Apparent Power Output to Utility Grid (kVA)	50
Max. Apparent Power Output to Utility Grid (kVA) Max. Apparent Power from Utility Grid (kVA)	55 55
Nominal Output Voltage (V)	00
Output Voltage Range (V)	
Nominal AC Grid Frequency (Hz)	
AC Grid Frequency Range (Hz)	70.0
Max. AC Current Output to Utility Grid (A) Max. AC Current from Utility Grid (A)	79.8
Power Factor	19.0
Max. Total Harmonic Distortion	
AC Output Data (Back-up)	
Back-up Nominal Apparent Power (kVA)	50
Max. Output Apparent Power without Grid (kVA)	55
Max. Output Apparent Power with Grid (kVA)	55
Max. Output Current (A)	79.8
Nominal Output Voltage (V) Nominal Output Frequency (Hz)	400 50 / 60
Output THDv (@Linear Load)	<3%
Efficiency	
Max. Efficiency	
European Efficiency	
Max. Battery to AC Efficiency	
Protection	
Residual Current Monitoring	
Battery Reverse Polarity Protection	
Anti-islanding Protection AC Overcurrent Protection	
AC Short Circuit Protection	
AC Overvoltage Protection	
DC Switch	
AC Switch	
AC Surge Protection	
Emergency Power Off Remote Shutdown	
General Data	
Operating Temperature Range (°C)	
Relative Humidity	
Max. Operating Altitude (m)	
Cooling Method	
User Interface	
Communication with BMS Communication with Meter	
Communication with Portal	
Weight (kg)	<200
Dimension (W × H × D mm)	
Noise Emission (dB)	
Topology	
Ingress Protection Rating Mounting Method	

*1: The models with the '06' suffix do not include an automatic switching module, specifically designed for 'grid-tied' applications. *: Please visit GoodWe website for the latest certificates.

GOODWE

GW50K06-BTC^{*1}

GW100K07-BTC GW100K06-BTC

Li	-lon	
	2 / 576.0 / 652.8	
200	~ 865	
	200	
1	2	2
100	100 / 100	100 / 100
100	100 / 100	100 / 100
50	100	100
55	110	110
50	100	100
50	100	100
55	110	110
55	110	110
	L/N/PE	
	18 ~ 497 (Germany)	
) / 60	
47 ~ 52 (AU); 47.	5 ~ 51.5 (Germany)	
79.8	159.5	159.5
79.8	159.5	159.5
	8 leading to 0.8 lagging)	
<	:3%	
	100	
-	110	
-	110	-
-	159.5	
-	400	-
-	50 / 60	-
-	<3%	-
07	7.00/	
	7.6% 7.3%	
	7.2%	
51	.2 /0	
Inte	grated	
Inte	grated	
Inte	grated	
	I + II Optional)	
	grated grated	
Inte	gratou	
-20 ~ +60 (>	45°C derating)	
	n-condensing)	
	000	
	an Cooling	
	WLAN + APP	
	5, CAN	
	S485	
	35, LAN	.040
<200	<240	<240
	360 × 750	
	<68 isolated	
	P20	
	unded	
010		

Lynx C Series

101-156kWh I High Voltage Battery

Featuring enhanced safety and reliable performance, GoodWe's high-voltage battery Lynx C Series has been specially designed for various C&I solar rooftop applications. Lynx C combines with GoodWe hybrid inverter ETC Series and retrofit battery inverter BTC Series to form a highly-flexible energy storage system that helps manage energy use for maximized self-consumption and ensures a reliable power supply for business. In addition, the system allows the user to level out peak demands and ultimately leads to the reduction of electricity bills. The battery comes with automatic detection of extended battery modules, which enables easy configuration and fast commissioning.

> Smart Control · Remote monitoring & updates via inverter · Low-power sleep mode

Friendly & Thoughtful Design Auto-recognition modules

· Easy to transport

.

Flexible & Adaptable Applications

101–156kWh wide capacity range Compatible with GoodWe BTC and ETC Series

Lynx C Series

Technical [Data	LX C101-10
Usable Energy (kV	Vh) ^{*1}	101.38
Battery Module		
Number of Module	25	11
Cell Type		
Nominal Voltage (\	/)	422.4
Operating Voltage	Range (V)	369.6 ~ 468.6
Nominal Dis- / Cha	arge Current (A) ^{*2}	
Nominal Power (kv	V) ^{*2}	42.24
Operating Tempera	ature Range (°C)	
Relative Humidity		
Max. Operating Al	titude (m)	
Communication		
Weight (kg)		1120
Dimensions (W × H	H × D mm)	1155 × 1650 >
Ingress Protection	Rating	
Mounting Method		
	Safety	
Standard and Certification	EMC	
	Transportation	

*1: Test conditions, 100% DOD, 0.2C charge & discharge at +25 ±2 °C for battery system at beginning life. System Usable Energy may vary with different Inverter. *2: Nominal Charge / Discharge and power derating will occur related to Temperature and SOC. *: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

GOODWE

LX C120-10	LX C138-10	LX C156-10
119.81	138.24	156.67
LX C9.2-10: 3	8.4V 9.21kWh	
13	15	17
LFP (Li	FePO4)	
499.2	576.0	652.8
436.8 ~ 553.8	504.0 ~ 639.0	571.2 ~ 724.2
1(00	
49.92	57.60	65.28
Charge: 0 ~ +45; D	ischarge: -20 ~ +50	
0~	95%	
20	00	
CAN +	RS485	
1280	1480	1650
< 730	1155 × 20	065 × 730
IP	21	
Grou	nded	
IEC62619, IEC6	2040, IEC63056	
IEC / EN61000	D-6-1 / 2 / 3 / 4	
UN	38.3	

ESA Series

30kW/60kWh I C&I Energy Storage System

GoodWe's ESA 30kW/60kWh all-in-one outdoor cabinet, designed for small to medium size commercial and industrial (C&I) energy storage applications, is a compact, easy-to-install, and high-performance turnkey solution energy storage system. The ESA Series seamlessly integrates battery, inverter, and BMS/EMS components into a single cabinet, complemented by air-conditioning units, along with fireproof and explosion-proof features. Its modular design ensures minimal disruption in case of local failures, facilitating quick and effortless module replacement. Multiple cabinets can be connected in parallel to expand the size of the energy storage system, enabling flexible configurations.

Smart Control & Monitoring

Remote monitoring & updates Smart energy management system

Superb Safety & Reliability

Reliable LFP technology with high cycle stability for long-term performance

· IP55 and C4 corrosion protection for indoor & outdoor installation

· Fire suppression and explosion prevention design

All-in-one Design

 \bigotimes

BREE

1

- THE REALES

Compact, easy-to-install design for reduced installation and O&M costs

11

GOODHE

1.1

۰

· Modular design with high power and energy density

Efficient & Flexible Applications

Supports a multi-cabinet parallel connection and easy system expansion

Integrated BMS/EMS, suitable for various applications

ESA Series

Technical Data

Battery Input Data

Battery Type Nominal Battery Voltage (\

Battery voltage range (V)

- Start-up Voltage (V) Number of Battery Input
- Max. Continuous Charging Current (A) Max. Continuous Discharging Current (A)
- Max. Charging Power (W)

Max. Discharging Power (W

PV String Input Data

- Max. Input Power (W)*1 Max. Input Voltage (V)*
- MPPT Operating Voltage Range (V Start-up Voltage (V)
- Nominal Input Voltage (V) Max. Input Current per MPPT (A
- Max. Short Circuit Current per MPPT (A) Number of MPP Trackers

Number of Strings per MPP1

- AC Output Data (On-grid)
- Nominal Output Power (W) Nominal Apparent Power Output to Utility Grid (VA)
- Max. Apparent Power Output to Utility Grid (VA) Max. Apparent Power from Utility Grid (VA)⁹
- Nominal Output Voltage (V)
- Output Voltage Range (V)⁴ Nominal AC Grid Frequency (Hz) AC Grid Frequency Range (Hz) Max. AC Current Output to Utility Max. AC Current Durput to Utility
- Max. AC Current From Utility Grid
- Max. Total Harmonic Distortio

AC Output Data (Back-up)

- Back-up Nominal Apparent Power (V Max. Output Apparent Power without Grid (V
- Max. Output Apparent Power with Grid (VA
- Max. Output Current (A) Nominal Output Voltage (V)
- Nominal Output Freqency (Hz Output THDv (@Linear Load)

Efficiency

- European Efficiency Max. Battery to AC Effi MPPT Efficiency

Protection

- PV String Current Monitoring PV Insulation Resistance Dete
- Residual Current Monitoring
- PV Reverse Polarity Protection Battery Reverse Polarity Protection
- Anti-islanding Protection AC Overcurrent Protection
- AC Short Circuit Protection
- AC Overvoltage Protection
- DC Switch DC Surge Protection
- AC Surge Protectio
- Rapid Shutdown Remote Shutdow

General Data

- Operating Temper Relative Humidity
- Max. Operating Altitude Cooling Method
- User Interface
- Communication with BMS
- Communication with Meter Communication with Porta
- Weight (kg)
- Dimension (W × H × D mm) Noise Emission (dB)
- Topology Self-consumption at Night (W)
- Ingress Protection Rating
- Mounting Method
- *1: In Australia, for most of the PV module, the max.Input power can achieve 2*Pn, Such as the max.input power of GW15K-ET can achieve 30000W. Besides, Max. Input Power, not the max.input power of GW15K-ET can achieve 30000W. continuous for 1.5*normal power. *2: For 1000V system, Maximum operating voltage is 950V. *3: According to the local grid regulation. *4: Output Voltage Range: phase voltage. *5: Can be reached only if PV and battery power is enough. *6: DC Switch: GHX6-55P (for Australia).

- *7: No Back-up Output.

GW30K-ET

Li-Ion
500
200 ~ 800 180
2
50 × 2
50 × 2
30000 30000
00000
45000
200 ~ 850
200
620
<u> </u>
2
2/2/2
30000
30000
<u>33000</u> 30000
380 / 400, 3L / N / PE
0 ~ 300
50 / 60
<u>45 ~ 65</u> 47.8
43.5
~1 (Adjustable from 0.8 leading to 0.8 lagging) <3%
<3%
20000
30000 30000 (36000@60s)
30000
45.5 (54.5@60s)
<u> </u>
<3%
98.0%
97.5%
97.5%
99.9%
Integrated
Integrated
Integrated Integrated
Integrated
Integrated
Integrated Integrated
Integrated
Integrated
Type II
Type III Optional
Optional
Integrated
-35 ~ +60
0 ~ 95%
4000 Smart Fap Cooling
Smart Fan Cooling LED, WLAN + APP
RS485 / CAN
RS485
WiFi / 4G 54
54 520 × 660 × 220
<60
Non-isolated
<15 IP66
Wall Mounted
grid, the Max. AC Current Output to Utility Grid is 50.0A for GW30K-ET.

*8: For 380V grid, the Max, AC Current Output to Utility Grid is 50.0A for GW30K-ET.

*8: For 380V grad, the Max. AC Current Output to Utility Grid is SUUA for GW30K-E1.
*9: When the load is connected to the inverter's backup port, the Max. Apparent Power from Utility Grid can reach to 33K for GW30K-ET respectively.
*10: When the load is connected to the inverter's backup port, the Max. AC Current From Utility Grid can reach to 50A for GW30K-ET respectively.
*11: For Austria, Max. Output Power (W) is 30K for GW30K-ET.
*For 380V grid, the Nominal Output Current is 45.5A for GW30K-ET.
*Please visit GoodWe website for the latest certificates.
* All noit use shown are for reference only. Actual appropriate approx.

*: All pictures shown are for reference only. Actual appearance may vary

GOODWE

Technical Data	GW60KWH-D-10	GW60KWH-D-10 (Extension)	
Battery Data			
Usable Energy (kWh) ^{*1}		60	
Cell Type	LFP	(LiFePO4)	
Pack Nominal Energy (kWh)		5.76	
Number of Packs		11	
Nominal Voltage (V)		633.6	
Operating Voltage Range (V)	554	1.4 ~ 712.8	
Max. Charge / Discharge Current (A) ^{*2}		96	
Cycle Life ^{*3}	≥5000		
Depth of Discharge	100%		
Efficiency			
Round-trip Efficiency	95%		
General Data			
Operating Temperature Range (°C)	Charge: 0 ~ +55; Discharge: -25 ~ +55		
Storage Temperature (°C)	0 ~ +35 (<one (≤<="" -20="" 0="" td="" year);="" ~=""><td>≤One Month); +35 ~ +45 (≤One Month)</td></one>	≤One Month); +35 ~ +45 (≤One Month)	
Relative Humidity		0~95%	
Max. Operating Altitude (m)		3000	
Heating & Cooling	Air (Conditioner	
Communication Interface	CAN		
Weight (kg)	appro.1029.5	appro.972	
Dimension (W \times H \times D mm)	1108 × 2050 × 1111.5	808 × 2050 × 1111.5	
ngress Protection Rating		IP55	
Anti-Corrosion ^{*4}	C4 (Optional upgrade to C5)		
Fire Suppression	Perfluoro		

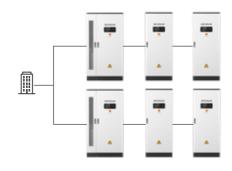
*1: Test conditions, 100% DOD, 0.5C charge & discharge at +25 ±2 °C for battery system at beginning life. System Usable Energy may vary with different Inverter.

*2: Actual Dis-/Charge Current and power derating will occur related to Cell Temperature and SOC. *3: Based on Cell test condition of 25 $\pm 2^{\circ}$ C, 0.5C / 0.5C and 80% EOL. *: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

C&I Energy Storage Solution

The energy storage system of the ESA 30kW/60kWh series is composed of the GoodWe hybrid inverter ET 30kW series and Lynx C 60kWh battery system.



Extension of the Energy Storage Solution

The energy storage system can be expanded by connecting up to two additional Lynx C 60kWh extension batteries (model GW60KWH-D-10-Extension), resulting in 180kWh battery capacity.

Parallel connection of the hybrid inverter will enable further system expansions.

ESA Series

AKAHAM

50kW/100kWh I C&I Energy Storage System

The GoodWe ESA Series presents an all-in-one energy storage system specifically designed for small to mediumsized commercial and industrial (C&I) applications. With a power and capacity of 50kW/100kWh, it offers a reliable and efficient solution for diverse C&I scenarios, including industrial parks and commercial complexes. The solution boasts a modular design, offering flexibility for expansion and convenience during installation, operation, and maintenance. With its IP55 ingress protection, the solution is perfectly suited for outdoor installations, safeguarding it against dust, dirt, and water ingress. Additionally, the system supports the parallel connection of batteries and inverters, allowing for the expansion of the energy storage system size and enabling flexible configurations.

Smart Control & Monitoring

Remote monitoring & updates
 Multi-protocol communication supported

Superb Safety & Reliability

- Reliable LFP technology with high cycle stability for long-term performance
- IP55 and C4 corrosion protection for indoor & outdoor installation
- · Fire suppression and explosion prevention design

 \bigotimes

Friendly & Thoughtful Design

- · Compact, easy-to-install design for reduced installation and O&M costs
- Modular design with high power and energy density

- · Integrated BMS/EMS, suitable for various applications
- Support a multi-cabinet parallel connection for easy system expansion

Technical Data	GW50K-ET-10
Battery Input Data	
Battery Type Nominal Battery Voltage (V)	Li-lon 500
Battery Voltage Range (V)	200 ~ 800
Start-up Voltage (V)	200 ~ 000
Number of Battery Input	1
Max. Continuous Charging Current (A)	100
Max. Continuous Discharging Current (A)	100
Max. Charging Power (W)	55000
Max. Discharging Power (W)	55000
PV String Input Data	
Max. Input Power (W)	75000
Max. Input Voltage (V)	1000
MPPT Operating Voltage Range (V)	165 ~ 850
Start-up Voltage (V)	160
Nominal Input Voltage (V)	620
Max. Input Current per MPPT (A)	42 / 32 / 42 / 32
Max. Short Circuit Current per MPPT (A)	55 / 42 / 55 / 42
Number of MPP Trackers Number of Strings per MPPT	4 2
	۲
AC Output Data (On-grid)	
Nominal Output Power (W)	50000
Nominal Apparent Power Output to Utility Grid (VA)	50000
Max. Apparent Power Output to Utility Grid (VA)	55000
Max. Apparent Power from Utility Grid (VA) Nominal Output Voltage (V)	55000 380 / 400, 3L / N / PE
Output Voltage Range (V)	176 ~ 276
Nominal AC Grid Frequency (Hz)	50 / 60
AC Grid Frequency Range (Hz)	45 ~ 65
Max. AC Current Output to Utility Grid (A)	75.8
Max. AC Current From Utility Grid (A)	75.8
Power Factor Max. Total Harmonic Distortion	~1 (Adjustable from 0.8 leading to 0.8 lagging) <3%
	<3%
AC Output Data (Back-up)	
Back-up Nominal Apparent Power (VA)	50000
Max. Output Apparent Power (VA)	55000 (60000 at 60sec, 75000 at 10sec)
Max. Output Current (A)	83.3
Nominal Output Voltage (V) Nominal Output Frequency (Hz)	380 / 400, 3L / N / PE 50 / 60
Output THDv (@Linear Load)	< 3%
Efficiency	
	00.40/
Max. Efficiency European Efficiency	<u>98.1%</u> 97.5%
Max. Battery to AC Efficiency	97.5%
MAX: Battery to No Elifecticy MPPT Efficiency	99.0%
Protection	
PV String Current Monitoring	Integrated
PV Insulation Resistance Detection Residual Current Monitoring	Integrated Integrated
PV Reverse Polarity Protection	Integrated
Battery Reverse Polarity Protection	Integrated
Anti-islanding Protection	Integrated
AC Overcurrent Protection	Integrated
AC Short Circuit Protection	Integrated
AC Overvoltage Protection	Integrated
DC Switch DC Surge Protection	
	Type II (Type I + II Optional) Type II
AC Surge Protection	
AC Surge Protection	
AC Surge Protection AFCI	Optional Optional
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown	Optional
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown	Optional Optional
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data	Optional Optional Integrated
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C)	Optional Optional Integrated -35 ~ +60
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C) Relative Humidity	Optional Optional Integrated -35 ~ +60 0 ~ 95%
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C)	Optional Optional Integrated -35 ~ +60
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m)	Optional Optional Integrated -35 ~ +60 0 ~ 95% 4000
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Cooling Method Jser Interface Communication with BMS	Optional Optional Integrated -35 ~ +60 0 ~ 95% 4000 Smart Fan Cooling LED, WLAN + APP CAN
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Cooling Method Jser Interface Communication with BMS Communication with Meter	Optional Optional Integrated -35 ~ +60 0 ~ 95% 4000 Smart Fan Cooling LED, WLAN + APP CAN RS485
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Derating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Cooling Method Jser Interface Communication with BMS Communication with Meter Communication with Portal	Optional Optional Integrated -35 ~ +60 0 ~ 95% 4000 Smart Fan Cooling LED, WLAN + APP CAN RS485 WIFI + LAN / 4G (Optional)
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Derating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Cooling Method Jser Interface Communication with BMS Communication with Meter Communication with Meter Communication with Portal Weight (kg)	Optional Optional Integrated -35 ~ +60 0 ~ 95% 4000 Smart Fan Cooling LED, WLAN + APP CAN RS485 WIFI + LAN / 4G (Optional) 65
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Cooling Method Jser Interface Communication with BMS Communication with Meter Communication with Meter Communication with Portal Weight (kg) Dimension (W × H × D mm)	$\begin{tabular}{c} Optional \\ Optional \\ Integrated \\ \hline & & & \\ \hline & & & \\ \hline & & & & \\ \hline & & & &$
AC Surge Protection AFCI Rapid Shutdown Remote Shutdown General Data Operating Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Cooling Method Jser Interface Communication with BMS	Optional Optional Integrated -35 ~ +60 0 ~ 95% 4000 Smart Fan Cooling LED, WLAN + APP CAN RS485 WIFI + LAN / 4G (Optional) 65

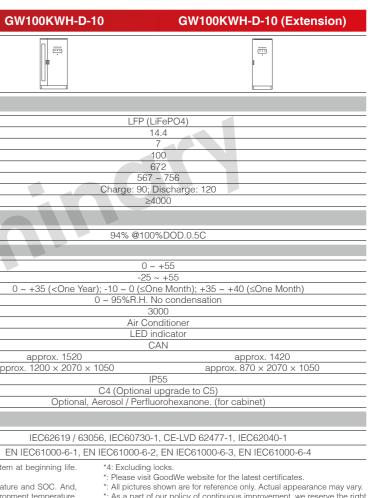
Technical Data

Battery Data	
Cell Type	
Pack Nominal Energy (kWh)	
Number of Packs	
Usable Energy (kWh) ^{*1}	
Nominal Voltage (V)	
Operating Voltage Range (V)	
Max. Charge / Disharge Current (A) ^{*2}	
Cycle Life*3	
Efficiency	
Round-trip Efficiency	
General Data	
Charging Operating Temperature Range (°C)	
Discarging Operating Temperature Range (°C)	
Storage Temperature (°C)	0~+
Relative Humidity	
Max. Operating Altitude (m)	
Heating & Cooling	
User Interface	
Communication Interface	
Weight (kg)	a
Dimension (W × H × D mm) Ingress Protection Rating	approx. 1
Anti-Corrosion*4	
Fire Suppresion	
Certification	
Safety Regulation	1
EMC	EN IEC

*1: Test conditions, 100% DOD, 0.2C charge & discharge at +25 $\pm 2^{\circ}\text{C}$ for battery system at beginning life. System Usable Energy may vary with different Inverter.

*2: Actual Dis- / Charge Current and power derating will occur related to Cell Temperature and SOC. And, Max C-rate continuous time is affected by SOC, Cell Temperature, Atmosphere environment temperature, Air-conditioner refrigeration capacity. *3: Based on test condition of $25 \pm 2^{\circ}$ C, 0.5C / 0.5C and 80% EOL.

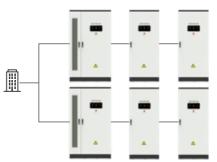
C&I Energy Storage Solution


The energy storage system of the ESA 50kW/100kWh series is composed of the GoodWe hybrid inverter ET 50kW series and Lynx C 100kWh battery system. Additionally, when paired with the Static Transfer Switch (STS) Box from GoodWe, this storage solution can not only enable dependable UPS-level switching to backup mode but also interact with diesel generators to efficiently replenish batteries.

*1. Backup function can be only realized with STS Box (Static Transfer Switch Box). *: Please visit GoodWe website for the latest certificates.

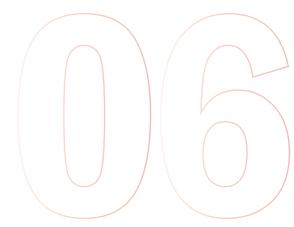
*: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

GOODWE


*: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

Extension of the Energy Storage Solution

The energy storage system can be expanded by connecting up to two additional Lynx C 100kWh extension batteries (model GW100KWH-D-10-Extension), resulting in 300kWh battery capacity.



Parallel connection of the hybrid inverter will enable further system expansions.

*The parallel connection feature for ET 50kW inverters is expected in late 2024.

UTILITY SCALE PV PRODUCTS

Inverter

- HT
- UT

MV Station

HT Series

225/250kW | Three phase | 6/12 MPPTs

The new HT1500V Series (225/250kW) is GoodWe's top power compensation, and is compatible with bifacial 182mm/210mm modules. It features string level monitoring or intelligent detection of current issues. The series is also equipped with optional Anti-PID function and can realize 24-hour monitoring. For GW225KN-HT & GW250KN-HT, ne unique mechanism of smart string protection switch supported for the DC side protection against short circuits or reverse connections. The configuration of the HT1500V can be easily done via bluetooth, while firmware diagnosis and upgrading can be operated remotely. These outstanding sets of features were conceived to ensure the lowest levelized cost of energy (LCOE) and a utility that

runs efficiently.

Smart O&M String level monitoring · Real-time monitoring

Superb Safety & Reliability Smart string protection switch¹ • Type II SPD for both DC and AC

AC terminal ready for 300mm² aluminum cables Reactive power compensation at night

Higher Yields

20A max. current per string¹ Anti-PID function

HT Series

Technical Data	GW225K-HT	GW250K-HT	GW225KN-HT	GW250KN-H	
Input					
Max. Input Voltage (V)		1	500		
MPPT Operating Voltage Range (V)			~ 1500		
Start-up Voltage (V)			50		
Nominal Input Voltage (V)			160		
Max. Input Current per MPPT (A)	30	30	60	60	
Max. Short Circuit Current per MPPT (A)	50	50	90	90	
Number of MPP Trackers	12	12	6	6	
Number of Strings per MPPT	2	2	3	3	
Output					
Nominal Output Power (kW)	225	250	225	250	
Nominal Output Apparent Power (kVA)	225	250	225	250	
Max. AC Active Power (kW)	247.5	250	247.5	250	
Max. AC Apparent Power (kVA)	247.5	250	247.5	250	
Nominal Output Voltage (V)		800,	3L / PE		
Output Voltage Range (V)		640 ~ 920			
Nominal AC Grid Frequency (Hz)	50 / 60				
AC Grid Frequency Range (Hz)		45 ~ 55	/ 55 ~ 65		
Max. Output Current (A)	178.7	180.5	178.7	180.5	
Power Factor			8 leading to 0.8 lagging)		
Max. Total Harmonic Distortion		<	3%		
Efficiency					
Max. Efficiency		99	.0%		
European Efficiency	98.5%	98.5%	98.7%	98.7%	
Protection					
PV String Current Monitoring		Integ	grated		
PV Insulation Resistance Detection	Integrated				
Residual Current Monitoring	Integrated				
PV Reverse Polarity Protection	Integrated				
Anti-islanding Protection	Integrated				
AC Overcurrent Protection	Integrated				
AC Short Circuit Protection	Integrated				
AC Overvoltage Protection	Integrated				
DC Switch	Integrated				
DC Surge Protection	Type II				
AC Surge Protection			pe II		
Emergency Power Off			tional		
Remote Shutdown			ional		
Anti-PID			tional		
PID Recovery Reactive Rewar Companyation at Night		· · · · · · · · · · · · · · · · · · ·	tional		
Reactive Power Compensation at Night Power Supply at Night		· · · · · · · · · · · · · · · · · · ·	grated		
General Data			·		
Operating Temperature Range (°C)		-30	~ +60		
Relative Humidity			100%		
Max. Operating Altitude (m)	5000 (>4000 derating)				
Cooling Method	Smart Fan Cooling				
User Interface	LED (LCD optional), Bluetooth + APP				
Communication			or PLC		
Communication Protocols		Modb	us RTU		
Weight (kg)		1	11		
Dimension (W \times H \times D mm)		1091 × 6	678 × 341		
Topology		Non-i	solated		
Self-consumption at Night (W)		<	:18		
Ingress Protection Rating		IF	°66		
DC Connector					
DC CONNECTOR	MC4-Evo2 (4 ~ 6mm ²) OT / DT terminal (Max. 300mm ²)				

*: Please visit GoodWe website for the latest certificates. *: The product appearance shown is GW225KN-HT / GW250KN-HT. The appearance may vary for GW225K-HT / GW250K-HT.

G	O	Ο	D	し	E

UT Series

320/350kW | Three Phase | 12/15 MPPTs

The UT 1500V Series (320/350kW) is GoodWe's new threephase string inverter designed to increase the profitability of utility-scale projects. Offering options of 12 MPPTs and 15 MPPTs, this series comes with a maximum string input current of 15/20A, thus supporting bifacial 182mm/210mm module access. The Anti-PID (Potential Induced Degradation) and PID-recovery functions are available to mitigate and recover from PID effects. Moreover, designed for harsh outdoor environments, the UT inverter is built to withstand extreme temperatures, with a wide operating range of -35°C to +60°C. With enhanced safety, optimal LCOE, and ensured cost-effectiveness, the highperformance UT inverter provides a future-ready solution for utility-scale PV projects.

UT Series

Technical Data	GW320K-UT
Input	
Max. Input Voltage (V)	
MPPT Operating Voltage Range (V)	
Start-up Voltage (V)	
Nominal Input Voltage (V)	
Max. Input Current per MPPT (A)	30
Max. Short Circuit Current per MPPT (A)	50
Number of MPP Trackers	15
Number of Strings per MPPT	
Output	
Nominal Output Power (kW)	320
Nominal Output Apparent Power (kVA)	320
Max. AC Active Power (kW)	352
Max. AC Apparent Power (kVA)	352
Nominal Output Voltage (V)	
Output Voltage Range (V)	
Nominal AC Grid Frequency (Hz)	
AC Grid Frequency Range (Hz) Max. Output Current (A)	
Power Factor	
Max. Total Harmonic Distortion	
Efficiency	
Max. Efficiency	
European Efficiency	
Protection	
PV String Current Monitoring	
nternal Humidity Monitoring	
PV Insulation Resistance Detection	
Residual Current Monitoring	
PV Reverse Polarity Protection	
Anti-islanding Protection	
AC Overcurrent Protection	
AC Short Circuit Protection	
AC Overvoltage Protection DC Switch	
DC Surge Protection	
AC Surge Protection	
Anti-PID and PID recovery	
Reactive Power Compensation at Night	
Power Supply at Night	
-V Curve Scan	
General Data	
Operating Temperature Range (°C)	
Relative Humidity	
Max. Operating Altitude (m)	
Cooling Method	
Jser Interface	
Communication	
Communication Protocols	
Weight (kg)	
Dimension (W \times H \times D mm)	
Гороlogy	
Self-consumption at Night (W)	
ngress Protection Rating	
DC Connector	

*: Please visit GoodWe website for the latest certificates

Higher Yields

Reactive power compensation at night High-speed Power Line Communication (HPLC) for reduced wiring costs

· 20A max. DC input current per string¹ · Anti-PID and PID recovery

Superb Safety & Reliability

IP66 and optional C5 protection · Full power operation at high temperatures: 350kW@40°, 320kW@45°

Grid Friendly

Stable operation under weak grid conditions: SCR≥1.2

· Dynamic reactive power response <30ms

GOODWE

		GOODME
GW320KH-UT	GW350K-UT	GW350KH-UT
1500)	
480 ~ 1	500	
500		
1160		
40	30	40
60	50 15	60
2	15	12
320	352	352
320	352	352
352	352	352
352	352	352
800, 3L		
720 ~ 8		
45 ~ 55 / 5		
254		
~1 (Adjustable from 0.8 le		
<3%		
99.01	%	
98.80		
Integra	ted	
Integra		
Integra	ted	
Integra		
Integra Integra		
Integra		
Туре		
Туре		
Optior	nal	
Optior		
Integra		
Optior	nal	
-35 ~ +	⊦60	
0 ~ 10		
5000 (>4000	8,	
Smart Fan	-	
LED, LCD (Optiona		
RS485 or Modbus		
IVIOADUS 124		
1120 × 810		
Non-isol		
<3		
IPee	2	

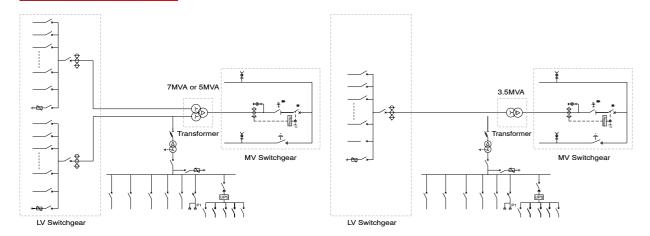
IP66

MC4 (4 ~ 6mm², 10mm² Optional) OT / DT terminal (Max. 400mm²)

MV Station

3.5/5/7MVA

GoodWe Medium-voltage Station, a compact step-up power center, is capable of withstanding various types of environments. It offers the highest power density in an energy-efficient and safe solution comprised of MV switchgear, transformer, and LV switchgear for power transformation in large-scale solar plants. The pre-assembled and cost-effective solution is integrated into a prefabricated 20ft container, ideal for easy transportation and quick installation. The Plugand-Play design makes grid connection exceptionally easy and rapid, and the modular architecture allows for simplified maintenance. All contained electrical components are typetested according to strict safety standards, providing safety for operators.


Cost-saving Solution

· 20ft container for easy transportation · A complete pre-assembled solution to minimalize deployment

Easy Operation & Maintenance

Plug-and-play installation · Integrated modular design simplifying maintenance

CIRCUIT DIAGRAM

(Q₀;

High Reliability & Safety

· Suitable for harsh environments

Trustworthy Adaptability

Compatible with HT/UT inverters*

Type-tested components of reliable quality

Outstanding adaption to extreme environments

*: The MCCB model of UT needs to be selected separately.

MV Station

Model	GW3500K-MVS	GW5000K-MVS	GW7000K-MVS
Transfomer			
Transformer Type		Oil immersed	
Rated Power (kVA)	3500kVA@40°C	5000kVA@40°C	7000kVA@40°C
Winding Connection	Dy11	Dy11-y11	Dy11-y11
LV / MV Voltage (kV)		0.8 / 10 ~ 35	
Maximun Input Current at Nominal Voltage (A)	2526	2 × 1805	2 × 2526
Frequency (Hz)		50 / 60	
Tapping range		±2×2.5%	
Peak Efficiency Index		≥99%	
Cooling Type	10	NAN (Oil Natural Air Natur	ral)
Impedance	7.0% (±10%)	7.5% (±10%)	8.0% (±10%)
Oil Type		Mineral oil (PCB free)	
Winding Material		AI / AI	
Insulation Class		А	
MV Switchgear			
Insulation Type		SF6	
Rate Voltage (kV)	12.0 ~ 40.5		
Rate Current (A)	630		
Internal Arcing Fault	IAC AFL 20kA / 1s		
Qty.of Feeder	2-3 feeders (D / V / C)		
LV Room			
ACB Specification	3200A / 800Vac / 3P, 1pcs	3200A / 800Vac / 3P, 2pcs	3200A / 800Vac / 3P, 2p
MCCB Specification	250A / 800Vac / 3P, 14pcs	250A / 800Vac / 3P, 20pcs	250A / 800Vac / 3P, 28p
Protection			
AC Input Protection		Circuit breaker	
Transformer Protection	Oil-te	mperature, oil-level,oil-pre	essure
LV Overvoltage Protection		AC Type I + II	
General Date			
Dimensions (W \times H \times D mm)		6058 × 2896 × 2438	
Approximate Weight (t)		<22	
Operating Temperature Range (°C)	-25 ~ +55		
Auxiliary Power Supply	5kVA	/ 400V (Optional: max. 20	OkVA)
Ingress Protection Rating		IP54	
Relative Humidity		0 ~ 95%	
Max. Operating Altitude (m)		1000 (Optional: 2000)	
Communication	Standard: RS485, Ethernet Optional: Optical Fiber		
Compliance	IEC 60076, IEC 62271-200, IEC 62271-202, IEC 61439-1 / 2, EN50588-1		

GOODWE

MONITORING PLATFORM & ACCESSORIES

Meter

- GM1000/1000D/3000
- GMK110/110D
- GMK330/360
- HK1000/3000
- GM3000C
- GM330

Smart Dongle

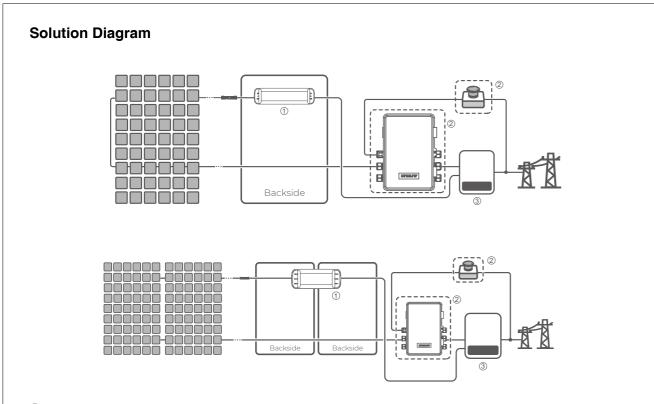
- 4G Module
- Wi-Fi/LAN Kit 2.0
- EzLink

Data Logger & Communication Box

- EzLogger3000R
- EzLogger3000C
- EzLogger3000U
- SCB3000
- SCB3000A&B
- SCU3000

RSD Receiver

The Rapid Shutdown (RSD) Receiver from GoodWe is a key component of the RSD 2.0 solution for PV systems, can be connected with two modules. Functioning as a module-level rapid shutdown device, it enhances fire safety for solar rooftops and buildings. The Receiver ensures the normal operation of modules by consistently receiving a PLC keep-alive signal from a transmitter integrated into GoodWe's inverters or an external transmitter. During emergencies, the module-level rapid shutdown is activated when the transmitter loses power and the signal becomes absent. In addition, when the external RSD initiator is pressed, the modules can also be shut down.


Plug & Play for easy installation

Integrated SoC for high reliability

Supports PLC communication

Meets NEC 2017/2020 requirements and SunSpec certified

① RSD Receiver - on the backside of modules

(2) External Transmitter and Initiator - An external transmitter and an external initiator should be added if the inverter does not include an integrated transmitter

③ Inverter

SoC

Receiver

Technical Data	GR-B1F-20	GR-B2F-20
Max. Number of Shutdown Moudule	1	2
Operating Voltage Range (V)	8 ~ 80 Pe	er channel
Rated Input Current (A)	2	22
Mode of Communication	Ρ	LC
Operating Temperature Range (°C / °F)	-40 ~ +85°C	(-40 ~ +185°F)
Ingress Protection Rating	IP68 / UI	L Type 6P
Maximum System Voltage (V)	15	500
Security Certification	NEC 2017 & 2020 & 2023 (690.12); UL17	741; CSA C22.2 No. 330; IEC / EN62109-1
EMC Certification	FCC Part15; ICES-003; IEC / EN61000-6-1 / -2 / -3 / -4	
Whether the SunSpec Protocol is Supported	Y	/es
Dimension (W \times H \times D mm / in)	140 × 37 × 23 mm (5.51 × 1.46 × 0.91 in)	132 × 52 × 23 mm (5.20 × 2.05 × 0.91 in)
Cable Length (m / in)	 In: 0.2m, Out: 0.8m (In: 7.87 in, Out: 31.50 in) (Integrated Junction Box) In: 1.2m, Out: 0.8m (In: 47.24 in, Out: 31.50 in) (Triad Junction Box) or Customize 	 In: 0.2m, Out: 1.4m (In: 7.87 in, Out: 55.12 in (Integrated Junction Box) In: 1.2m, Out: 1.3m (In: 47.24 in, Out: 51.18 in (Triad Junction Box) or Customize
Connector	MC4 or 0	Customize

Waterproof Box-Type PACK with RSD2.0 Transmitter

Technical Data	GTP-F2L-20	GTP-F2M-20
Main Electrical Data		
Power Supply Input Voltage (Vac)	85 ~ 264	180 ~ 550
Transmitter Input Voltage (Vdc)	1	2
Transmitter Input Current (DC) (A)	C	.8
Communication	SunSp	ec PLC
Core Data		
Number of Core	150A Core	150A Core × 2
Max. Current (A)	150	150 × 2
Max. System Voltage (Vdc)	15	500
Core Line Length (mm / in)	150 mm	(5.91 in)
Internal Dimensions / Outside Dimensions (mm / in)	30 / 60 mm (1.18 / 2.36 in)
Max Number of Strings ^{*1}	30 (Max. 1	5 Per Core)
Environmental		
Operating Temperature (°C / °F)	-40 ~ +60°C	(-40 ~ 140°F)
Enclosure Environmental Rating	IP65 / U	L Type 4
Mechanical		
Dimensions (W \times H \times D mm / in)	253 × 328 × 179 mm (9.96 × 12.91 × 7.05 in)
Mounting Type	Wall N	lounted
Features & Compliance		
Safety Compliance	NEC 2017 & 2020 (690.12); UL1741; CSA C22.2 No. 330-17	
EMC Compliance	FCC Part 15B, ICES-003, IE	C / EN61000-6-1 / -2 / -3 / -4

*1: According to the cable diameter φ 5.9mm, if cable diameter is more than 5.9mm, the number of strings per core will be reduced. Care should also be taken not to exceed the allowable current. *: Please visit GoodWe website for the latest certificates.

Residential Meter

Working altitude up to 3km

Residential Meter

Plug and play installation

Accuracy Class 1.0

[1]

Model			GMK110	GMK110D	
	Grid		Single-ph	ase	
	Voltage	Nominal Voltage-Line to N (Vac)	230		
lanut		Voltage	Voltage Range (Vac)	85 ~ 28	8
Input		Nominal AC Grid Frequency (Hz)	50 / 60)	
	Current	Current Transformer Ratio	Current Transformer Ratio 120A: 40		
	Current	Number of Current Transformers	1	2	
Communication			RS485	0	
Communication Distance (m)	Communication Distance (m)		1000	1000	
User interface		2 LED			
	Voltage / Current		Class	1	
Accuracy	Active Energy		Class	1	
	Reactive Energy		Class 2		
Power Consumption (W)	Power Consumption (W)		≤5		
	Dimensions (W \times H \times D mm)		19 × 85 × 67		
Structural Parameters	Weight (g))	50		
	Mounting		DIN rail		
	Ingress Pr	otection Rating	IP20		
	Operating Temperature Range (°C)		-30 ~ +60		
Environment Parameters	Storage Temperature Range (°C)		-30 ~ +	70	
	Relative H	umidity (non-condensing)	0% ~ 95%		
Max. Operating Altitude (m)		3000			

Power control for residential inverters

Wide voltage input range

\$ Easy Installation

2

Model GM1000 Grid Single-phase Nominal Voltage-Line to N (Vac) 110 / 230 Nominal Voltage-Line to Line (Vac) Voltage Input Voltage Range Nominal AC Grid Frequency (Hz) Current Transformer Ratio Current Number of Current Transformers 1 Communication Communication Distance (m) User interface Voltage / Current Active Energy Accuracy Reactive Energy Power Consumption (W) Dimensions ($W \times H \times D$ mm) Housing Mechanical Weight (g) 250 Mounting Ingress Protection Rating Operating Temperature Range (°C) Storage Temperature Range (°C) Environment Relative Humidity (non-condensing) Max. Operating Altitude (m) *: Please visit GoodWe website for the latest certificates

*: Please visit GoodWe website for the latest certificates. *: All pictures shown are for reference only. Actual appearance may vary.

The second secon

CTs included

 \odot

Compatible with SEMS Portal

Precise Data Collection

)	GM1000D	GM3000	GMK330	GMK360
е	Single-phase	Three-phase	Three-phase	Three-phase
	110 / 230	230	220 / 230	220 / 230
	-	400	380 / 400	380 / 400
		0.88Un-1.1Un		
		50 / 60		
	120A: 40mA		200A	: 50mA
	2	3	3	6
		RS485		
		1000		
	3 LED, Reset button		4 LED, Reset button	
	Class 1		Class 0.5	
	Class 1		Class 0.5	
	Class 2		Cla	ass 1
	<3			<5
	$36 \times 85 \times 66.5$		72 × 85 × 72	
	2 modules			-
	360	450	240	240
		Din rail		
		IP20		
		-25 ~ +60		
		-30 ~ +70		
		0 ~ 95%		
	2000		3	000

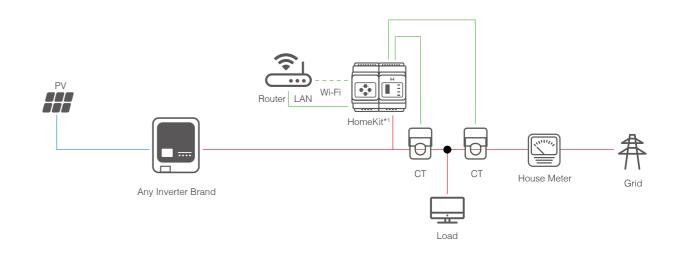
24-7 Real-time Consumption Monitoring CTs included Export Power Control Work with Inverters of Any Brand Cloud data transmission

.......

M

Model HK1000 HK3000 Grid Single-phase Three-phase 230 Nominal Voltage-Line to N (Vac) Nominal Voltage-Line to Line (Vac) 400 -Voltage Voltage Range 0.88Un-1.1Un Input 50 / 60 Nominal AC Grid Frequency (Hz) 200A:66.7mA / 120A:40mA Current Transformer Ratio 120A:40mA Current Number of Current Transformers 2 Communication RS485 or WLAN Communication Distance (m) RS485:1000, LAN:100, WiFi:10 Wireless Parameter Supported Standards & Frequencies 802.11b / g / n (2.412G-2.472G) 3 LED, Reset button User interface Voltage / Current Class 1 Accuracy Active Energy Class 1 Reactive Energy Class 2 Power Consumption (W) <3 $72 \times 85 \times 66.5$ Dimensions ($W \times H \times D$ mm) Housing 4 modules Machanical Weight (g) 320 500 Mounting Din rail Ingress Protection Rating IP20 Operating Temperature Range (°C) -25 ~ +60 Environment -30 ~ +70 Storage Temperature Range (°C) Relative Humidity (non-condensing) 0~95% Max. Operating Altitude (m) 2000

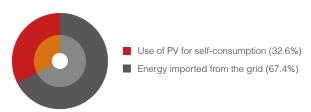
24-Hour Real-time Consumption Monitoring


HomeKit offers 24-hour real-time consumption control. With the assistance of the GoodWe monitoring platform SEMS, HomeKit can calculate self-consumption levels per day, month or year, providing a comprehensive overview of load consumption and the general effciency achieved in the use of solar energy. Furthermore, the power consumption of the HomeKit itself is insignificant, saving on additional electricity costs.

PV Generation: 15.1kWh

Use of PV for self-consumption (83.4%) Energy exported to the grid (16.6%)

C Double CT Design - Super Accurate Measurement


GoodWe HomeKit is designed to connect with two CTs (Current Transformer), which can measure the inverter side and the grid side at the same time. to ensure maximum accuracy with less than 1% error rate.

GoodWe HomeKit

-^-

Loads Consumption: 38.7kWh

Commercial & Industial Meter

Commercial & Industial Meter

Wide voltage input range

Export power control Ð

APP

Easy installation with external CTs

Configurable CT ratio via APP

Fully compatible with SEMS Portal SEMS

Model			GM3000C	
	Grid		Three-phase	
		Nominal Voltage-Line to N (Vac)	230	
Innut	Valtaga	Nominal Voltage-Line to Line (Vac)	400	
Input	Voltage	Voltage Range	0.88Un-1.1Un	
		Nominal AC Grid Frequency (Hz)	50 / 60	
	Current	Current Transformer Ratio	nA:5A	
Communication			RS485	
Communication Dis	stance (m)		1000	
User interface	Jser interface		3 LED, Reset button	
	Voltage / Cu	rrent	Class 1	
Accuracy	Active Energ	3V	Class 1	
	Reactive Energy		Class 2	
Power Consumption (W)			<3	
	Dimensions	$(W \times H \times D mm)$	72 × 85 × 66.5	
Mechanical	Housing		4 modules	
Mechanica	Weight (g)		200	
	Mounting		Din rail	
	Ingress Prote	ection Rating	IP20	
	Operating Te	emperature Range (°C)	-25 ~ +60	
Environment	Storage Tem	perature Range (°C)	-30 ~ +70	
	Relative Hur	nidity (non-condensing)	0 ~ 95%	
	Max. Operat	ting Altitude (m)	2000	

*: Please visit GoodWe website for the latest certificates

Power control for a single C&I inverter

Wide voltage input range

Model			GM330	
	Grid		Three-phase	
		Nominal Voltage-Line to N (Vac)	220 / 230	
) (alta ara	Nominal Voltage-Line to Line (Vac)	380 / 400	
Input	Voltage	Voltage Range	0.88Un-1.1Un	
		Nominal AC Grid Frequency (Hz)	50 / 60	
	Current	Current Transformer Ratio	nA: 5A	
	Current	Inputs for CT	3	
Communication			RS485	
Communication Di	stance (m)		1000	
User interface			4 LED, Reset button	
	Voltage / Cur	rrent	Class 0.5	
Accuracy	Active Energ	у	Class 0.5	
	Reactive Energy		Class 1	
Power Consumption (W)			<5	
	Dimensions	(W × H × D mm)	72 × 85 × 72	
Mechanical	Weight (g)		200	
	Mounting		Din rail	
	Ingress Prote	ection Rating	IP20	
	Operating Te	emperature Range (°C)	-25 ~ +60	
Environment	Storage Tem	perature Range (°C)	-30 ~ +70	
	Relative Hum	nidity (non-condensing)	0 ~ 95%	
	Max. Operating Altitude (m)		3000	

*: Please visit GoodWe website for the latest certificates. *: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

Easy installation with external CTs

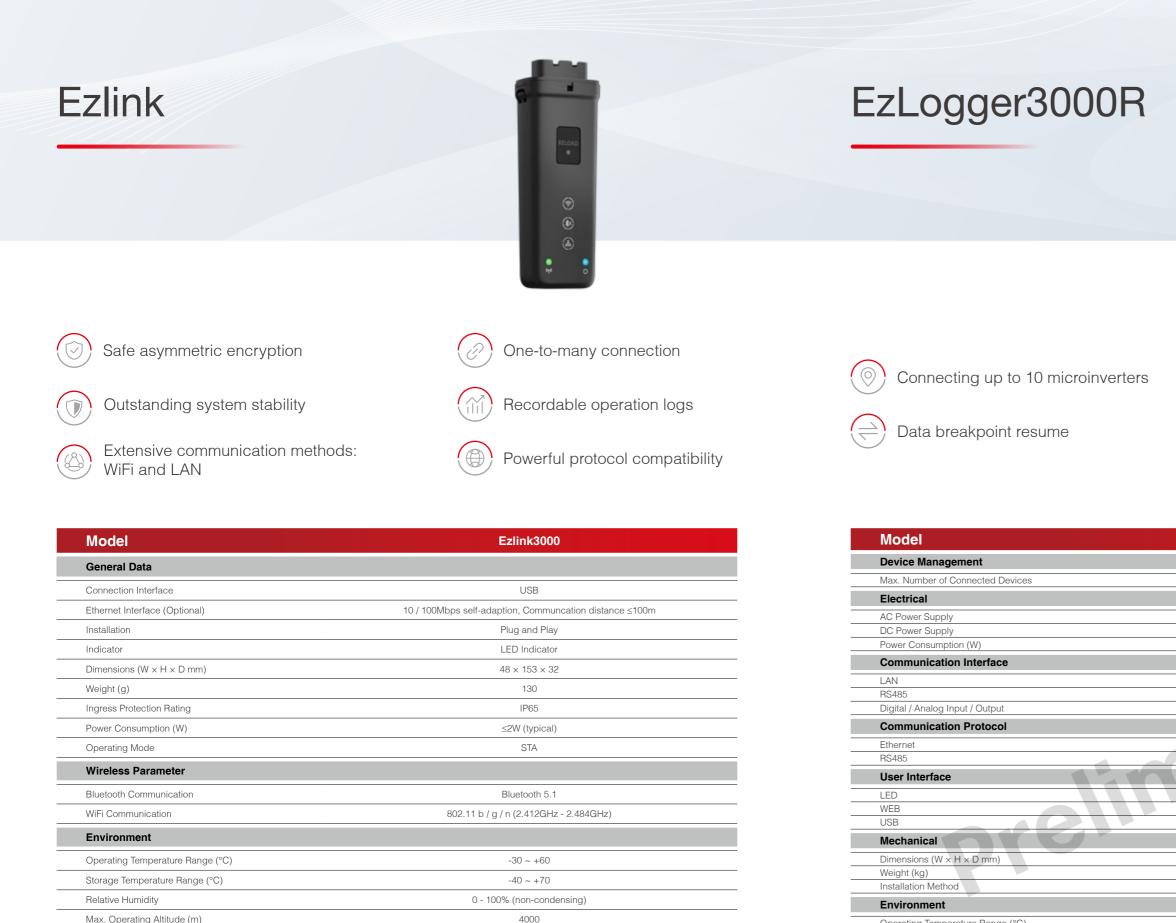
Compatible with SEMS Portal

Model	4G Kit-EC	4G Kit-AU
General Data		
Max. Inverters Supported		1
Connection Interface	USB	
Installation	Plug a	and Play
Indicator	LED I	ndicator
Dimensions (W \times H \times D mm)	49 ×	96 × 32
Standard SIM Card Size (mm)	25	× 15
Ingress Protection Rating	IF	P65
Power Consumption (W)	<4	
Operating Temperature Range (°C)	-30 ~ +60	
Storage Temperature Range (°C)	-40 ~ +70	
Relative Humidity	0-100% (nor	n-condensing)
Max. Operating Altitude (m)	4	000
Wireless Parameter		
LTE-FDD	B1 / B3 / B7 /	B8 / B20 / B28A
LTE-TDD	-	B40
WCDMA	B1 / B8	B1 / B2 / B5 / B8
GSM / GPRS	B3 / B8	

*: Please visit GoodWe website for the latest certificates.

Model		WiFi/LAN Kit-20	WiFi Kit-20	
Input voltage (V)		5		
Power Consumption ((W)	≤2		
Connection Interface		US	В	
	Ethernet Interface	10M / 100Mbps Self-adaption	-	
Communication	WLAN	IEEE 802.11 b /	g /n @2.4 GHz	
	Bluetooth	Bluetooth V4 Bluetooth LE S		
	Dimensions (W \times H \times D mm)	48.3 × 159.5 × 32.1	48.3 × 95.5 × 32.1	
Mechanical	Weight (g)	82	54	
Parameters	Ingress Protection Rating	IP65		
	Installation	Plug and Play		
Operating Temperature Range (°C)		-30 ~ +60		
Storage Temperature Range (°C)		-40 ~ +70		
Relative Humidity		0-95%		
Max. Operating Altitude (m)		4000		

*: Please visit GoodWe website for the latest certificates.


Remote Upgrade

Integrated Configuration

Plug & Play

Max. Operating Altitude (m)

*: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

Ingress Protection Rating

Operating Temperature Range (°C)

Storage Temperature Range (°C)

Relative Humidity Max. Operating Altitude (m)

*: Please visit GoodWe website for the latest certificates

*: All pictures shown are for reference only. Actual appearance may vary.

Support of multiple protocols

USB and embedded web for USB data reading and software upgrade

EzLogger3000R
10
AC Input: 100 ~ 240V, 50 / 60Hz; DC Output: 12V
12V / 1.5A
≤2.5
1
COM × 2
DI × 4
Modbus-TCP
Modbus-RTU
LED × 4
Embedded Web
USB 2.0 × 1
124 × 119.5 × 89.5
0.25
Wall mounting / Desktop mounting
-20 ~ +60
-30 ~ +75
0 ~ 95%
2000
IP20

EzLogger3000U

Connecting up to 100 devices

Data breakpoint resume

USB

Support of multiple protocols

USB and embedded web for data reading and software upgrade

Connecting up to 200 devices

Data breakpoint resume

Model	EzLogger3000C		
Device Management			
Max. Number of Connected Devices	100		
Electrical			
Power Adapter	AC Input: 100 ~ 240V, 50 / 60Hz DC Output: 24V		
DC Power Supply (V)	24		
Power Consumption (W)	<15		
Communication Interface			
LAN	2		
RS485	$COM \times 4$		
WIFI	802.11 b / g / n, 2.412GHz-2.484GHz		
4G	Optional		
Digital / Analog Input / Output	$DI \times 4$, $DO \times 2$, $AI \times 4$		
PT100 / PT1000	PT100 × 1, PT1000 × 1		
Active DO	12V, 100mA		
Communication Protocol			
Ethernet	Modbus-TCP, IEC 60870-5-104		
RS485	Modbus-RTU, IEC 60870-5-103 (standard), DL / T645		
User Interface			
LED	$LED \times 4$		
WEB	Embedded Web		
USB	USB 2.0 × 1		
Mechanical			
Dimensions (W \times H \times D mm)	255 × 47.5 × 173		
Weight (kg)	0.8		
Installation Method	Wall Mounting, DIN Rail Mounting, Tabletop Mounting		
Environment			
Operating Temperature Range (°C)	-30 ~ +60		
Storage Temperature Range (°C)	-40 ~ +70		
Relative Humidity	5 ~ 95%		
Max. Operating Altitude (m)	5000		
Ingress Protection Rating	IP20		

*: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

Model EzLo **Device Management** Max. Number of Connected Devices Electrical AC Power Supply DC Power Supply Power Consumption (W) **Communication Interface** LAN PLC RS485 Digital / Analog Input/Output PT100 / PT1000 Active DO **Communication Protocol** Ethernet RS485 **User Interface** LED WEB USB Mechanical Dimensions (W \times H \times D mm) Weight (kg) Installation Method Environment Operating Temperature Range (°C) Storage Temperature Range (°C) Relative Humidity Max. Operating Altitude (m) Ingress Protection Rating *: Please visit GoodWe website for the latest certificates. *: As a part of our policy of continuous improvement, we reserve the right to alter design and specifications without further notice.

Support of multiple protocols

USB and embedded web for data reading and software upgrad

			~			
	11	1	- 21	Т	114	U
2.21	9.					
_	<u> </u>					

EzLogger3000U-A

200	
100 ~ 240V, 50 / 60Hz	
24V	
≤27	
2	
1×PLC 1×HPLC)
COM × 8	
$DI \times 8$, $DO \times 4$, $AI \times 8$	
PT100×2, PT1000×2	
12V, 100mA	
Modbus-TCP, IEC 60870-5-104	
Modbus-RTU, IEC 60870-5-103 (standard), DL / T645	
LED × 4	
Embedded Web	
USB 2.0 x 1	
430 × 44 × 161	
1.2	
Wall Mounting, DIN Rail Mounting, Tabletop Mounting	
-30 ~ +60	
-40 ~ +70	
5 ~ 95%	
5000	
IP20	
offications without further notice	

Solar Communication Box 3000

Solar Communication Box 3000

Longer communication distance

Increased transmission rate

(\(=)

	Adaptable to I - V curve diagnosis
--	------------------------------------

Model	SCB3000		
Communication			
Max. Inverters Supported	60		
RS485 interface	4		
Ethernet	1 × RJ45, 10 / 100 Mbps		
Number of PLC	1		
Input Voltage Range of PLC (V)	800		
Configuration			
Datalogger	Ezlogger Pro × 1		
Fibre Channel Switch	2 optical ports, 6 electrical ports		
Fiber Termination Box	4-input, 24-ouput, SC single-mode		
Power Supply	100–277Vac, 50 / 60 Hz		
Power Consumption (W)	≤18		
Mechanical			
Dimensions (W \times H \times D mm)	350 × 460 × 143		
Weight (kg)	10.5		
Installation Method	Wall mounting, bracket mounting, pole mounting		
Environment			
Operating Temperature Range (°C)	-30 ~ +60		
Storage Temperature Range (°C)	-40 ~ +70		
Relative Humidity	0-100% (non-condensing)		
Max. Operating Altitude (m)	2000		
Ingress Protection Rating	IP65		
se visit GoodWe website for the latest certificates.			

isit GoodWe website for the latest cert

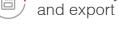
ே

Data collection and storage

Power Line Communication 2.0

Model	SCB3000A	SCB3000B		
Communication				
Max. Inverters Supported	60	120		
RS485 interface	4	8		
Ethernet	1 × RJ45, 10 / 100 Mbps	2 × RJ45, 10 / 100 Mbps		
Number of PLC	1	2		
Input Voltage Range of PLC (V)	8	00		
Configuration				
Datalogger	Ezlogger Pro × 1	Ezlogger Pro × 2		
Fibre Channel Switch	2 optical ports, 6 electrical ports			
Fiber Termination Box	4-input, 24-ouput, SC single-mode			
Power Supply	100-277 Vac, 50 / 60 Hz			
Power Consumption (W)	≤18	≤30		
Mechanical				
Dimensions (W \times H \times D mm)	724 × 7	80 × 229		
Weight (kg)	2	5.5		
Installation Method	Wall mounting, bracket mounting, pole mounting			
Environment				
Operating Temperature Range (°C)	-30 ~ +60			
Storage Temperature Range (°C)	-40 ~ +70			
Relative Humidity	0-100% (non-condensing)			
Max. Operating Altitude (m)	2000			
Ingress Protection Rating	IP65			

*: Ple


æ

쐠

Easy O&M

) Š

Support of multiple protocols

Support of various communication

Model	SCU3000-S	SCU3000	SCU3000A-S	SCU3000A		
Communication						
Max. Inverters Supported		2	200			
RS485 interface			8			
Ethernet		2 × RJ45, 1	10 / 100Mbps			
Number of PLC	1 × PLC	$2 \times PLC$	1 × HPLC	$2 \times HPLC$		
Input Voltage Range of PLC (V)		Ę	300			
Configuration						
Datalogger	EzLogger3000U × 1	EzLogger3000U × 1	EzLogger3000U-A × 1	EzLogger3000U-A ×		
Fibre Channel Switch	2 optical ports, 6 electrical ports					
Fiber Termination Box		24 ports, SC single-mode				
Power Supply		100 ~ 240V	′ac, 50 / 60Hz			
Power Consumption (W)	≤30	≤35	≤30	≤35		
Mechanical						
Dimensions (W \times H \times D mm)		723 × 7	780 × 226			
Weight (kg)	25	28	25	28		
Installation Method	Wall mounting, bracket mounting, pole mounting					
Environment						
Operating Temperature Range (°C)	-30 ~ +60					
Storage Temperature Range (°C)	-40 ~ +70					
Relative Humidity	5 ~ 95%					
Max. Operating Altitude (m)	5000					
Ingress Protection Rating			P65			

: Please visit GoodWe website for the latest certificates.

*: All pictures shown are for reference only. Actual appearance may vary.

SMART ENERGY MANAGEMENT SYSTEM

Pave The Road For The Future

All-in-one monitoring & comprehensive visualization

Dynamic carousel of all the plants under your account

Backup deployment for server disaster

0

Multi-terminal compatibility and sharing

Generation report and customized data analysis

Three-step data encryption

Reliable & Transparent Real-time Monitoring and Control of Power Stations & Comprehensive Visualization

GoodWe Smart Energy Management System (SEMS) is a costfree monitoring platform which offers reliable operation of photovoltaic plants with maximum yield. SEMS allows operators to simultaneously monitor a diverse range of photovoltaic power plants in different locations in real time and control the installations. Extensive data processing, customized charts, and alarm and maintenance functions ensure that operators, operations managers and asset managers can comfortably and efficiently manage the systems, ensuring maximum yields.

SEMS includes a range of functions and features to ensure reliable operation and to deliver precise information to operators at the press of a button. It is accessible by multiple accounts with different levels of access for owners, installers and EPC companies.

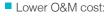
Multi-terminal Compatibility and Sharing

- PC Monitoring
- Real-time Display

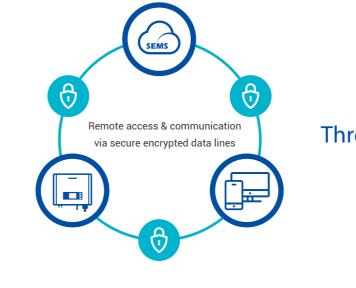
Generation Report and Customized Data Analysis

Precise and comprehensive detection and evaluation of plant data

The content and design of reports can be adjusted to suit your individual requirements. A report generator is also available in addition to standard reports.


All-in-One Monitoring & Comprehensive Visualization

 The live and archived data from any PV power plants in a particular account can be called up and graphically displayed



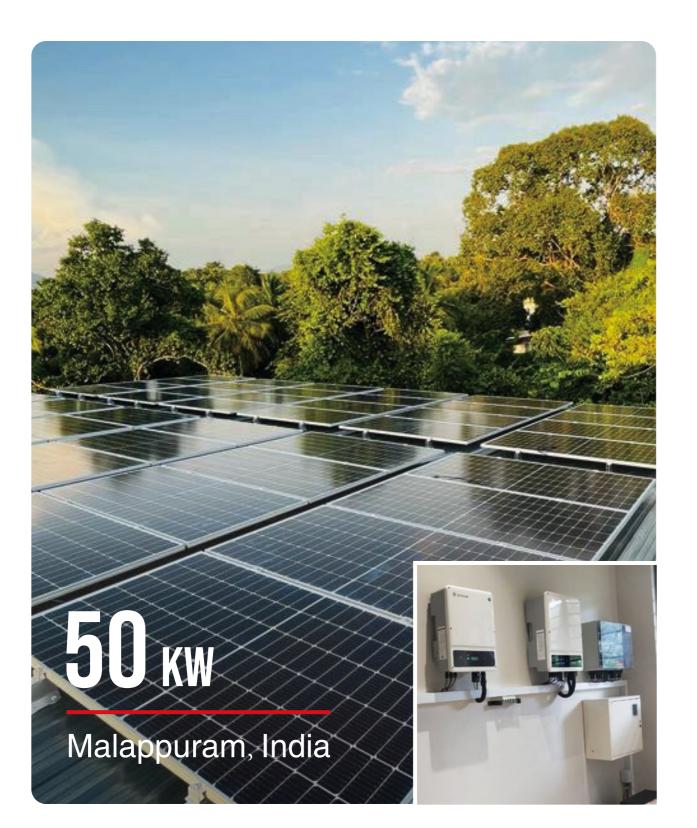
Dynamic carousel of all the plants under your account

- Full visibility of system performance
- & remote troubleshooting

Backup Deployment for Server Disaster

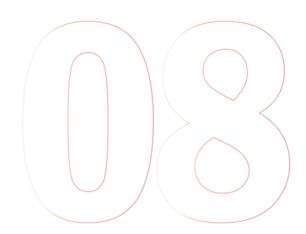
Performance sharing on

Three-Step Data Encryption



Stable

Speedy


RESIDENTIAL CASE REFERENCE

6 кw

Warragul Victoria, Australia

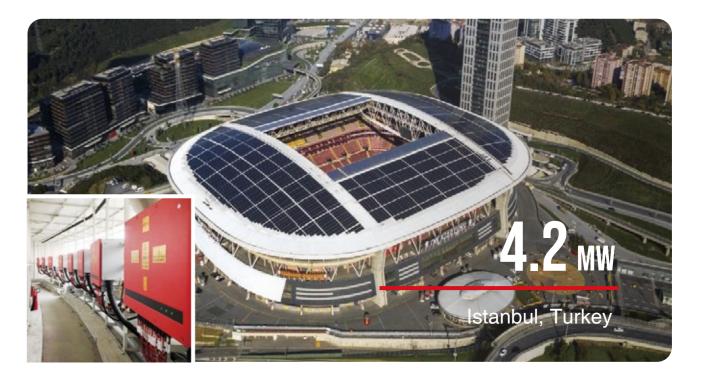
Gravatal, Brasil

Trezzano sul Naviglio, Italy

CASE REFERENCE

200 kw

Malaysia



Gujarat, India

Greece

UTILITY SCALE CASE REFERENCE

Badem, Germany

4.4_{MW}

China

MW

Nagpur, India

CUSTOMER SUPPORT SERVICES

GoodWe provides comprehensive support throughout your journey. From pre-sales consultations to post-purchase assistance, we're here to ensure your satisfaction every step of the way.

Pre-sales Support

- Product Inquiries
- Technical Consultations
- System Design Assistance

Post-sales Support

- Installation Guidance
- Troubleshooting Assistance
- System Monitoring & Maintenance Services
- System Upgrades & Expansion
- Ongoing Technical Support
- Warranty Support

Accessible

Responsive

USA/Canada/Puerto Rico

- +1 925-304-3430 (Sales) +1 8884180775 (Service)
- salesNa@goodwe.com (Sales) \leq service.us@goodwe.com (Service)
- (c) 16075 E 32nd Ave # A, Aurora, CO 80011

Mexico

- sales@goodwe.com (Sales) soporte.latam@goodwe.com (Service)
- Oswaldo Sanchez Norte 3615, Col. Hidalgo, Monterrey, Nuevo Leon, Mexico, C.P. 64290

Australia

- Wifi/Communications Support: 02 51040612 Tech Support: 03 99183905
- sales@goodwe.com (Sales) service.au@goodwe.com (Service)
- © 2/6 Enterprise Drive, Rowville, VIC 3178

China

- +86 (0) 512 6958 2201 +86 (0) 512 6291 6050-8317 (PVBM)
- sales@goodwe.com (Sales) service@goodwe.com (Service) pvbm@goodwe.com (PVBM)
- No. 90 Zijin Rd., New District, Suzhou, 215011, China

India

(b) +91 9355886166 (Service)

West & Central India: Aniket.Sawant@goodwe.com (Sales) South India: kevin.george@goodwe.com (Sales) North India: Varun.Raj@goodwe.com (Sales) service.in@goodwe.com (Service)

1202, G-Square Business Park, Sector 30A, Opp. Sanpada Railway Stn., Vashi, Navi Mumbai- 400703

Sri Lanka

- (Sales) +94 77 3222 387 (Sales)
- kashif.kamil@goodwe.com (Sales)

Turkey

- (+90(0)232 347 73 73
- info@goodwe.com.tr
- Egemenlik Mahallesi, Aydınlar Caddesi, No:43 Bornova / İzmir / TURKEY

Germany

- +49 89 7807289-0 (Sales) S +49 32 221092721 (Service)
- sales.de@goodwe.com (Sales) service.de@goodwe.com (Service)
- O Kistlerhofstrasse 170, 81379 Muenchen, Germany

Poland

- (C) +48 81 884 20 51 (Service)
- sales.pl@goodwe.com (Sales) service.pl@goodwe.com (Service)
- () ul. Częstochowska 140, 62-800 Kalisz, Poland

UK

- (+442045770609 (Service)
- sales.uk@goodwe.com (Sales) \leq service@goodwe.co.uk (Service)
- 4th Floor, 58-59 Great Marlborough Street, \bigcirc W1F 7JY London, England

Netherlands

- +31(0)30 737 1140 (Dutch-speaking service for installers) Q +3130 310 0456 (English-speaking service for end users)
- sales.nl@goodwe.com (Sales) \leq service.nl@goodwe.com (Service)
- O Rietbaan 2, 2908LP Capelle aan den Ijssel, The Netherlands

Italy

- +39 (0) 831 1623552 (Commerciale) C +39 0362 160 0006 (Assistenza Tecnica)
- sales.it@goodwe.com (Commerciale) \leq service.it@goodwe.com (Assistenza Tecnica)
- () Via Cesare Braico 61, 72100 Brindisi, Italia

Greece

- (C) +30 211 1995643 (Service)
- sales.gr@goodwe.com (Sales) \leq service.gr@goodwe.com (Service)
- 💿 Kistlerhofstrasse 170, 81379 Muenchen, Germany

Spain

- (%) +34 951 128 056 (Service)
- sales.es@goodwe.com (Sales) \leq soporte.es@goodwe.com (Service)
- O Paseo de la Habana, 9, Edificio Utopicus, 28036, Madrid, España

Portugal

- (b) +34 951 128 056 (Service)
- sales.pt@goodwe.com (Sales) servico.pt@goodwe.com (Service)
- O Paseo de la Habana, 9, Edificio Utopicus, 28036, Madrid, España

France

- +33 676 721 805 (Sales) C +33 4 22 84 04 68 (Service)
- sales.fr@goodwe.com (Sales) \leq service.fr@goodwe.com (Service)
- () Kistlerhofstrasse 170, 81379 Muenchen, Germany

Belgium

- (C) +32 3 808 71 67 (Dutch/French-speaking service for installers)
- sales.nl@goodwe.com (Sales) \leq service.nl@goodwe.com (Service)
- Rietbaan 2, 2908LP Capelle aan den Ijssel, The Netherlands

The United Arab Emirates

- +971 56 539 13 17 (Sales) Ò +44 2045770609 (Service)
- sales.me@goodwe.com (Sales) \leq service@goodwe.co.uk (Service)
- Kistlerhofstrasse 170, 81379 Muenchen, Germany

South Africa

- Q +27 861 126 777 (Service)
- sales.africa@goodwe.com (Sales) \leq service.za@goodwe.com (Service)

Japan

- 070-9129-8951 (Sales) C 0267-66-7566 (service call center)
- yiliqi@goodwe.com (Sales) \leq yoshihiro.nakazawa@goodwe.com (Service)
- 東京都中央区日本橋小舟町8-6 H¹0日本橋小舟町 6F

Korea

- 02 3497 1066 Q
- larry.kim@goodwe.com (Sales) \leq Service.KR@goodwe.com (Service)
- 8F Invest Korea Plaza, 7 Heoleung-ro Seocho-gu Korea (06792)

Vietnam

- +84 28 7300 4918 B
- sales@goodwe.com (Sales) \leq service@aoodwe.com (Service)
- M floor, 70-72-74, 37 street, An Phu Ward, Thu Duc, HCMC, Vietnam

Thailand

Sales@goodwe.com (Sales) \leq service@goodwe.com (Service)

Brazil

- +5581991239286 (Sales) Q +55 81 4042 1222 (Service)
- sergio@goodwe.com (Sales) \bigtriangledown servico.br@goodwe.com (Service)
- Rua Abelardo 45, Recife/PE, 52050-310

Argentina

sales@goodwe.com (Sales) \square soporte.latam@goodwe.com (Service)

Indonesia

Sales@goodwe.com (Sales) \leq Service@goodwe.com (Service)

Malaysia

Sales@goodwe.com (Sales) \leq Service@goodwe.com (Service)

Pakistan

- +923000457492 (Sales) Q +92 3335557527 (Services)
- Fahad.Ali@goodwe.com (Sales) \sim rafay.ahmad@goodwe.com(Service)

Austria

- +49 89 7807289-0 (Sales) B +49 32 221092721 (Service)
- sales.de@goodwe.com (Sales) \leq service.de@goodwe.com (Service)
- () Kistlerhofstrasse 170, 81379 Muenchen, Germany

Switzerland

- +49 89 7807289-0 (Sales) Q +49 32 221092721 (Service)
- sales.de@goodwe.com (Sales) \leq service.de@goodwe.com (Service)
- 📀 Kistlerhofstrasse 170, 81379 Muenchen, Germany

Czech Republic

- +49 89 7807289-0 (Sales) Q +420 232232237 (Service) BayWa r.e. customers: +420 555 444 237
- sales.de@goodwe.com (Sales) service.cz@goodwe.com (Service) BayWa r.e. customers: podpora@baywa-re.cz
- Kistlerhofstrasse 170, 81379 Muenchen, Germany

Slovakia

- +49 89 7807289-0 (Sales) Q +421 232606233 (Service) BayWa r.e. customers: +420 555 444 237
- sales.de@goodwe.com (Sales) service.cz@goodwe.com (Service) BayWa r.e. customers: podpora@baywa-re.cz
- Sistlerhofstrasse 170, 81379 Muenchen, Germany

Ireland

- (+442045770609 (Service)
- sales.uk@goodwe.com (Sales) \bigtriangledown service@goodwe.co.uk (Service)
- First Floor, Sutherland House, 5-6 Argyll Street, London, England, W1F 7TE UK

EU/EMEA

- +49 89 7807289-0 (Sales) +49 32 © 221092721 (Service)
- sales.de@goodwe.com (Sales) service.de@goodwe.com (Service)
- 🛇 Kistlerhofstrasse 170, 81379 Muenchen, Germany

Sweden

- (C) +46 101388243 (Service)
- Service.se@goodwe.com (Service)
- 🔿 Kistlerhofstrasse 170, 81379 Muenchen, Germany